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Wave Optics

Chapter Ten

WAVE OPTICS

10.1  INTRODUCTION

In 1637 Descartes gave the corpuscular model of light and derived Snell’s
law. It explained the laws of reflection and refraction of light at an interface.
The corpuscular model predicted that if the ray of light (on refraction)
bends towards the normal then the speed of light would be greater in the
second medium. This corpuscular model of light was further developed
by Isaac Newton in his famous book entitled OPTICKS and because of
the tremendous popularity of this book, the corpuscular model is very
often attributed to Newton.

In 1678, the Dutch physicist Christiaan Huygens put forward the
wave theory of light – it is this wave model of light that we will discuss in
this chapter. As we will see, the wave model could satisfactorily explain
the phenomena of reflection and refraction; however, it predicted that on
refraction if the wave bends towards the normal then the speed of light
would be less in the second medium. This is in contradiction to the
prediction made by using the corpuscular model of light. It was much
later confirmed by experiments where it was shown that the speed of
light in water is less than the speed in air confirming the prediction of the
wave model; Foucault carried out this experiment in 1850.

The wave theory was not readily accepted primarily because of
Newton’s authority and also because light could travel through vacuum

© N
CERT 

no
t to

 be
 re

pu
bli

sh
ed



Physics

352

and it was felt that a wave would always require a medium to propagate
from one point to the other. However, when Thomas Young performed
his famous interference experiment in 1801, it was firmly established
that light is indeed a wave phenomenon. The wavelength of visible
light was measured and found to be extremely small; for example, the
wavelength of yellow light is about 0.5 µm. Because of the smallness
of the wavelength of visible light (in comparison to the dimensions of
typical mirrors and lenses), light can be assumed to approximately
travel in straight lines. This is the field of geometrical optics, which we
had discussed in the previous chapter. Indeed, the branch of optics in
which one completely neglects the finiteness of the wavelength is called
geometrical optics and a ray is defined as the path of energy
propagation in the limit of wavelength tending to zero.

After the interference experiment of Young in 1801, for the next 40
years or so, many experiments were carried out involving the
interference and diffraction of lightwaves; these experiments could only
be satisfactorily explained by assuming a wave model of light. Thus,
around the middle of the nineteenth century, the wave theory seemed
to be very well established. The only major difficulty was that since it
was thought that a wave required a medium for its propagation, how
could light waves propagate through vacuum. This was explained
when Maxwell put forward his famous electromagnetic theory of light.
Maxwell had developed a set of equations describing the laws of
electricity and magnetism and using these equations he derived what
is known as the wave equation from which he predicted the existence
of electromagnetic waves*. From the wave equation, Maxwell could
calculate the speed of electromagnetic waves in free space and he found
that the theoretical value was very close to the measured value of speed
of l ight. From this, he propounded that l ight must be an

electromagnetic wave. Thus, according to Maxwell, light waves are
associated with changing electric and magnetic fields; changing electric
field produces a time and space varying magnetic field and a changing
magnetic field produces a time and space varying electric field. The
changing electric and magnetic fields result in the propagation of
electromagnetic waves (or light waves) even in vacuum.

In this chapter we will first discuss the original formulation of the
Huygens principle and derive the laws of reflection and refraction. In
Sections 10.4 and 10.5, we will discuss the phenomenon of interference
which is based on the principle of superposition. In Section 10.6 we
will discuss the phenomenon of diffraction which is based on Huygens-
Fresnel principle. Finally in Section 10.7 we will discuss the
phenomenon of polarisation which is based on the fact that the light
waves are transverse electromagnetic waves.

* Maxwell had predicted the existence of electromagnetic waves around 1855; it
was much later (around 1890) that Heinrich Hertz produced radiowaves in the
laboratory. J.C. Bose and G. Marconi made practical applications of the Hertzian

waves
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10.2  HUYGENS PRINCIPLE

We would first define a wavefront: when we drop a small stone on a calm
pool of water, waves spread out from the point of impact. Every point on
the surface starts oscillating with time. At any instant, a photograph of
the surface would show circular rings on which the disturbance is
maximum. Clearly, all points on such a circle are oscillating in phase
because they are at the same distance from the source. Such a locus of
points, which oscillate in phase is called a wavefront ; thus a wavefront

is defined as a surface of constant phase. The speed with which the
wavefront moves outwards from the source is called the speed of the
wave. The energy of the wave travels in a direction perpendicular to the
wavefront.

If we have a point source emitting waves uniformly in all directions,
then the locus of points which have the same amplitude and vibrate in
the same phase are spheres and we have what is known as a spherical
wave as shown in Fig. 10.1(a). At a large distance from the source, a

DOES LIGHT TRAVEL IN A STRAIGHT LINE?

Light travels in a straight line in Class VI; it does not do so in Class XII and beyond! Surprised,
aren’t you?

In school, you are shown an experiment in which you take three cardboards with
pinholes in them, place a candle on one side and look from the other side. If the flame of the
candle and the three pinholes are in a straight line, you can see the candle. Even if one of
them is displaced a little, you cannot see the candle. This proves, so your teacher says,
that light travels in a straight line.

In the present book, there are two consecutive chapters, one on ray optics and the other
on wave optics. Ray optics is based on rectilinear propagation of light, and deals with
mirrors, lenses, reflection, refraction, etc. Then you come to the chapter on wave optics,
and you are told that light travels as a wave, that it can bend around objects, it can diffract
and interfere, etc.

In optical region, light has a wavelength of about half a micrometre. If it encounters an
obstacle of about this size, it can bend around it and can be seen on the other side. Thus a
micrometre size obstacle will not be able to stop a light ray. If the obstacle is much larger,
however, light will not be able to bend to that extent, and will not be seen on the other side.

This is a property of a wave in general, and can be seen in sound waves too. The sound
wave of our speech has a wavelength of about 50cm to 1 m. If it meets an obstacle of the
size of a few metres, it bends around it and reaches points behind the obstacle. But when it
comes across a larger obstacle of a few hundred metres, such as a hillock, most of it is
reflected and is heard as an echo.

Then what about the primary school experiment? What happens there is that when we
move any cardboard, the displacement is of the order of a few millimetres, which is much
larger than the wavelength of light. Hence the candle cannot be seen. If we are able to move
one of the cardboards by a micrometer or less, light will be able to diffract, and the candle
will still be seen.

One could add to the first sentence in this box: It learns how to bend as it grows up!

FIGURE 10.1 (a) A
diverging spherical

wave emanating from
a point source. The

wavefronts are
spherical.
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small portion of the sphere can be considered as a plane and we have
what is known as a plane wave [Fig. 10.1(b)].

Now, if we know the shape of the wavefront at t = 0, then Huygens
principle allows us to determine the shape of the wavefront at a later
time τ. Thus, Huygens principle is essentially a geometrical construction,
which given the shape of the wafefront at any time allows us to determine
the shape of the wavefront at a later time. Let us consider a diverging
wave and let F1F2 represent a portion of the spherical wavefront at t = 0
(Fig. 10.2). Now, according to Huygens principle, each point of the
wavefront is the source of a secondary disturbance and the wavelets

emanating from these points spread out in all directions with the speed

of the wave. These wavelets emanating from the wavefront are usually

referred to as secondary wavelets and if we draw a common tangent

to all these spheres, we obtain the new position of the wavefront at a
later time.

FIGURE 10.1  (b) At a
large distance from
the source, a small

portion of the
spherical wave can

be approximated by a
plane wave.

FIGURE 10.2 F
1
F

2
 represents the spherical wavefront (with O as

centre) at t = 0. The envelope of the secondary wavelets
emanating from F1F2 produces the forward moving  wavefront G1G2.

The backwave D1D2 does not exist.

Thus, if we wish to determine the shape of the wavefront at t = τ, we
draw spheres of radius vτ from each point on the spherical wavefront
where v represents the speed of the waves in the medium. If we now draw
a common tangent to all these spheres, we obtain the new position of the
wavefront at t = τ.  The new wavefront shown as G

1
G

2
 in Fig. 10.2 is again

spherical with point O as the centre.
The above model has one shortcoming: we also have a backwave which

is shown as D
1
D

2
 in Fig. 10.2. Huygens argued that the amplitude of the

secondary wavelets is maximum in the forward direction and zero in the
backward direction; by making this adhoc assumption, Huygens could
explain the absence of the backwave. However, this adhoc assumption is
not satisfactory and the absence of the backwave is really justified from
more rigorous wave theory.

In a similar manner, we can use Huygens principle to determine the
shape of the wavefront for a plane wave propagating through a medium
(Fig. 10.3).

FIGURE 10.3
Huygens geometrical

construction for a
plane wave

propagating to the
right. F1 F2 is the

plane wavefront at
t = 0 and G1G2 is the
wavefront at a later

time τ. The lines A1A2,
B1B2 … etc, are

normal to both F
1
F

2

and G1G2 and
represent rays.
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10.3 REFRACTION AND REFLECTION OF

PLANE WAVES USING HUYGENS

PRINCIPLE

10.3.1  Refraction of a plane wave

We will now use Huygens principle to derive the laws of
refraction. Let PP′ represent the surface separating medium
1 and medium 2, as shown in Fig. 10.4. Let v1 and v2

represent the speed of light in medium 1 and medium 2,
respectively. We assume a plane wavefront AB propagating
in the direction A′A incident on the interface at an angle i
as shown in the figure. Let τ be the time taken by the
wavefront to travel the distance BC. Thus,

BC = v1 τ

In order to determine the shape of the refracted wavefront, we draw a
sphere of radius v2τ from the point A in the second medium (the speed of
the wave in the second medium is v2). Let CE represent a tangent plane
drawn from the point C on to the sphere. Then, AE = v2 τ   and CE would
represent the refracted wavefront.  If we now consider the triangles ABC
and AEC, we readily obtain

sin i = 1BC
AC AC

v τ
= (10.1)

and

sin r = 2AE
AC AC

v τ
= (10.2)

where i and r are the angles of incidence and refraction, respectively.

FIGURE 10.4 A plane wave AB is incident at an angle i

on the surface PP′  separating medium 1 and medium 2.

The plane wave undergoes refraction and CE represents
the refracted wavefront. The figure corresponds to v2 < v1

so that the refracted waves bends towards the normal.
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Christiaan Huygens

(1629 – 1695) Dutch
physicist, astronomer,
mathematician and the
founder of the wave
theory of light. His book,
Treatise on light, makes
fascinating reading even
today. He brilliantly
explained the double
refraction shown by the
mineral calcite in this
work in addition to
reflection and refraction.
He was the first to
analyse circular and
simple harmonic motion
and designed and built
improved clocks and
telescopes. He discovered
the true geometry of
Saturn’s rings.
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Thus we obtain

1

2

sin
sin

i v

r v
= (10.3)

From the above equation, we get the important result that if r < i (i.e.,
if the ray bends toward the normal), the speed of the light wave in the
second medium (v

2
) will be less then the speed of the light wave in the

first medium (v
1
). This prediction is opposite to the prediction from the

corpuscular model of light and as later experiments showed, the prediction
of the wave theory is correct. Now, if c represents the speed of light in
vacuum, then,

1
1

c
n

v
= (10.4)

and

n2 = 
2

c

v
(10.5)

are known as the refractive indices of medium 1 and medium 2,
respectively. In terms of the refractive indices, Eq. (10.3) can be
written as

n1 sin i = n2 sin r (10.6)

This is the Snell’s law of refraction. Further, if  λ1 and λ 2 denote the
wavelengths of light in medium 1 and medium 2, respectively and if the
distance BC is equal to λ

 1
 then the distance AE will be equal to λ

 2
 (because

if the crest from B has reached C in time τ, then the crest from A should
have also reached E in time τ ); thus,

1 1

2 2

BC
AE

v

v

λ

λ
= =

or

1 2

1 2

v v

λ λ
= (10.7)

The above equation implies that when a wave gets refracted into a
denser medium (v1 > v2) the wavelength and the speed of propagation
decrease but the frequency  ν (= v/λ) remains the same.

10.3.2  Refraction at a rarer medium

We now consider refraction of a plane wave at a rarer medium, i.e.,
v

2
 > v

1
. Proceeding in an exactly similar manner we can construct a

refracted wavefront as shown in Fig. 10.5. The angle of refraction
will now be greater than angle of incidence; however, we will still have
n1 sin i = n2 sin r . We define an angle ic by the following equation

2

1

sin c

n
i

n
= (10.8)

Thus, if i = ic then sin r = 1 and r = 90°. Obviously, for i > ic, there can
not be any refracted wave. The angle i

c 
is known as the critical angle and

for all angles of incidence greater than the critical angle, we will not have
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any refracted wave and the wave will undergo what is known as total

internal reflection. The phenomenon of total internal reflection and its
applications was discussed in Section 9.4.

FIGURE 10.5 Refraction of a plane wave incident on a rarer medium for
which v

2
 > v

1
. The plane wave bends away from the normal.

10.3.3  Reflection of a plane wave by a plane surface

We next consider a plane wave AB incident at an angle i on a reflecting
surface MN. If v represents the speed of the wave in the medium and if τ
represents the time taken by the wavefront to advance from the point B
to C then the distance

BC =  vτ

In order the construct the reflected wavefront we draw a sphere of
radius vτ from the point A as shown in Fig. 10.6. Let CE represent the
tangent plane drawn from the point C to this sphere. Obviously

AE = BC = vτ

FIGURE 10.6 Reflection of a plane wave AB by the reflecting surface MN.
AB and CE represent incident and reflected wavefronts.

If we now consider the triangles EAC and BAC we will find that they
are congruent and therefore, the angles i and r (as shown in Fig. 10.6)
would be equal. This is the law of reflection.

Once we have the laws of reflection and refraction, the behaviour of
prisms, lenses, and mirrors can be understood. These phenomena were
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discussed in detail in Chapter 9 on the basis of rectilinear propagation of
light. Here we just describe the behaviour of the wavefronts as they
undergo reflection or refraction. In Fig. 10.7(a) we consider a plane wave
passing through a thin prism. Clearly, since the speed of light waves is
less in glass, the lower portion of the incoming wavefront (which travels
through the greatest thickness of glass) will get delayed resulting in a tilt
in the emerging wavefront as shown in the figure. In Fig. 10.7(b) we
consider a plane wave incident on a thin convex lens; the central part of
the incident plane wave traverses the thickest portion of the lens and is
delayed the most. The emerging wavefront has a depression at the centre
and therefore the wavefront becomes spherical and converges to the point
F which is known as the focus. In Fig. 10.7(c) a plane wave is incident on
a concave mirror and on reflection we have a spherical wave converging
to the focal point F. In a similar manner, we can understand refraction
and reflection by concave lenses and convex mirrors.

FIGURE 10.7  Refraction of a plane wave by (a) a thin prism, (b) a convex lens. (c) Reflection of a
plane wave by a  concave mirror.

From the above discussion it follows that the total time taken from a
point on the object to the corresponding point on the image is the same
measured along any ray. For example, when a convex lens focusses light
to form a real image, although the ray going through the centre traverses
a shorter path, but because of the slower speed in glass, the time taken
is the same as for rays travelling near the edge of the lens.

10.3.4  The doppler effect

We should mention here that one should be careful in constructing the
wavefronts if the source (or the observer) is moving. For example, if there
is no medium and the source moves away from the observer, then later
wavefronts have to travel a greater distance to reach the observer and
hence take a longer time. The time taken between the arrival of two
successive wavefronts is hence longer at the observer than it is at the
source. Thus, when the source moves away from the observer the
frequency as measured by the source will be smaller. This is known as
the Doppler effect. Astronomers call the increase in wavelength due to
doppler effect as  red shift since a wavelength in the middle of the visible
region of the spectrum moves towards the red end of the spectrum. When
waves are received from a source moving towards the observer, there is
an apparent decrease in wavelength, this is referred to as blue shift.
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You have already encountered Doppler effect for sound waves in
Chapter 15 of Class XI textbook. For velocities small compared to the
speed of light, we can use the same formulae which we use for sound
waves. The fractional change in frequency ∆ν/ν is given by –vradial/c, where
v

radial
 is the component of the source velocity along the line joining the

observer to the source relative to the observer; v
radial 

is considered positive
when the source moves away from the observer. Thus, the Doppler shift
can be expressed as:

– radialv

c

ν

ν

∆
= (10.9)

The formula given above is valid only when the speed of the source is
small compared to that of light. A more accurate formula for the Doppler
effect which is valid even when the speeds are close to that of light, requires
the use of Einstein’s special theory of relativity. The Doppler effect for
light is very important in astronomy. It is the basis for the measurements
of the radial velocities of distant galaxies.

Example 10.1  What speed should a galaxy move with respect
to us so that the sodium line at 589.0 nm is observed
at 589.6 nm?

Solution  Since νλ = c,  –
ν λ

ν λ

∆ ∆
=  (for small changes in ν and λ). For

∆λ = 589.6 – 589.0 = + 0.6 nm

we get [using Eq. (10.9)]

– – radialv

c

ν λ

ν λ

∆ ∆
= =

or,  v
radial

 5 –10.6
3.06 10 ms

589.0
c

  
≅ + = + ×  

  

    = 306 km/s

Therefore, the galaxy is moving away from us.

Example 10.2

(a) When monochromatic light is incident on a surface separating
two media, the reflected and refracted light both have the same
frequency as the incident frequency. Explain why?

(b) When light travels from a rarer to a denser medium, the speed
decreases. Does the reduction in speed imply a reduction in the
energy carried by the light wave?

(c) In the wave picture of light, intensity of light is determined by the
square of the amplitude of the wave. What determines the intensity
of light in the photon picture of light.

Solution
(a) Reflection and refraction arise through interaction of incident light

with the atomic constituents of matter. Atoms may be viewed as

 E
X

A
M

P
L
E 1

0
.2
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oscillators, which take up the frequency of the external agency (light)
causing forced oscillations. The frequency of light emitted by a charged
oscillator equals its frequency of oscillation. Thus, the frequency of
scattered light equals the frequency of incident light.

(b) No. Energy carried by a wave depends on the amplitude of the
wave, not on the speed of wave propagation.

(c) For a given frequency, intensity of light in the photon picture is
determined by the number of photons crossing an unit area per
unit time.

10.4  COHERENT AND INCOHERENT ADDITION OF WAVES

In this section we will discuss the interference pattern produced by
the superposition of two waves. You may recall that we had discussed
the superposition principle in Chapter 15 of your Class XI textbook.
Indeed the entire field of interference is based on the superposition

principle according to which at a particular point in the medium, the

resultant displacement produced by a number of waves is the vector

sum of the displacements produced by each of the waves.

Consider two needles S
1
 and S

2
 moving periodically up and down

in an identical fashion in a trough of water [Fig. 10.8(a)]. They produce
two water waves, and at a particular point, the phase difference between
the displacements produced by each of the waves does not change
with time; when this happens the two sources are said to be coherent.
Figure 10.8(b) shows the position of crests (solid circles) and troughs
(dashed circles) at a given instant of time. Consider a point P for which

S
1
 P = S

2
 P

Since the distances S
1
 P and S

2
 P are equal, waves from S

1
 and S

2
will take the same time to travel to the point P and waves that emanate
from S

1
 and S

2
 in phase will also arrive, at the point P, in phase.

Thus, if the displacement produced by the source S
1
 at the point P

is given by

y
1
 = a cos ωt

then, the displacement produced by the source S
2
 (at the point P) will

also be given by

y
2
 = a cos ωt

Thus, the resultant of displacement at P would be given by

y = y
1
 + y

2
 = 2 a cos ωt

Since the intensity is the proportional to the square of the
amplitude, the resultant intensity will be given by

I = 4 I
0

where I
0
 represents the intensity produced by each one of the individual

sources; I
0
 is proportional to a2. In fact at any point on the perpendicular

bisector of S
1
S

2
, the intensity will be 4I

0
. The two sources are said to

(a)

(b)

FIGURE 10.8 (a) Two
needles oscillating in

phase in water
represent two coherent

sources.
(b) The pattern of

displacement of water
molecules at an

instant on the surface
of water showing nodal

N (no displacement)
and antinodal A

(maximum
displacement) lines.
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interfere constructively and we have what is referred to as constructive

interference. We next consider a point Q [Fig. 10.9(a)]
for which

S2Q –S1Q = 2λ

The waves emanating from S1 will arrive exactly two cycles earlier
than the waves from S

2
 and will again be in phase [Fig. 10.9(a)]. Thus, if

the displacement produced by  S
1 

 is given by

y
1
 = a cos ωt

then the displacement produced by  S2  will be given by

y2 = a cos (ωt – 4π)  =  a cos ωt

where we have used the fact that a path difference of 2λ corresponds to a
phase difference of 4π. The two displacements are once again in phase
and the intensity will again be 4 I

0
 giving rise to constructive interference.

In the above analysis we have assumed that the distances S1Q and S2Q
are much greater than d (which represents the distance between S1 and
S

2
) so that although S

1
Q and S

2
Q are not equal, the amplitudes of the

displacement produced by each wave are very nearly the same.
We next consider a point R [Fig. 10.9(b)] for which

S2R – S1R = –2.5λ

The waves emanating from S1 will arrive exactly two and a half cycles
later than the waves from S

2
  [Fig. 10.10(b)]. Thus if the displacement

produced by  S
1 

 is given by

y
1
 = a cos ωt

then the displacement produced by  S2  will be given by

y2 = a cos (ωt + 5π)  = – a cos ωt

where we have used the fact that a path difference of 2.5λ corresponds to
a phase difference of 5π. The two displacements are now out of phase
and the two displacements will cancel out to give zero intensity. This is
referred to as destructive interference.

To summarise: If we have two coherent sources S1 and S2 vibrating
in phase, then for an arbitrary point P whenever the path difference,

S1P  ~ S2P =  nλ     (n = 0, 1, 2, 3,...) (10.10)

we will have constructive interference and the resultant intensity will be
4I

0
; the sign ~ between  S

1
P and S

2
 P represents the difference between

S1P and S2 P. On the other hand, if the point P is such that the path
difference,

S
1
P  ~ S

2
P = (n+ 1

2
) λ     (n = 0, 1, 2, 3, ...) (10.11)

we will have destructive interference and the resultant intensity will be
zero. Now, for any other arbitrary point G (Fig. 10.10) let the phase
difference between the two displacements be φ. Thus, if the displacement
produced by S

1
 is given by

y
1
 = a cos ωt

FIGURE 10.9
(a) Constructive
interference at a

point Q for which the
path difference is 2λ.

(b) Destructive
interference at a

point R for which the
path difference is

2.5 λ.

FIGURE 10.10 Locus
of points for which
S

1
P – S

2
P is equal to

zero, ±λ, ± 2λ, ± 3λ .
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then, the displacement produced by S
2
 would be

y2 = a cos (ωt + φ )

and the resultant displacement will be given by

y = y1 + y2

   =  a [cos ωt + cos (ωt +φ)]

= 2 a cos (φ/2) cos (ωt + φ/2)

The amplitude of the resultant displacement is 2a cos (φ/2) and
therefore the intensity at that point will be

I = 4 I0 cos2 (φ/2) (10.12)

If φ = 0, ± 2 π, ± 4 π,… which corresponds to the condition given by
Eq. (10.10) we will have constructive interference leading to maximum
intensity. On the other hand, if φ = ± π, ± 3π, ± 5π … [which corresponds to
the condition given by Eq. (10.11)] we will have destructive interference
leading to zero intensity.

Now if the two sources are coherent (i.e., if the two needles are going
up and down regularly) then the phase difference φ at any point will not
change with time and we will have a stable interference pattern; i.e., the
positions of maxima and minima will not change with time. However, if
the two needles do not maintain a constant phase difference, then the
interference pattern will also change with time and, if the phase difference
changes very rapidly with time, the positions of maxima and minima will
also vary rapidly with time and we will see a “time-averaged” intensity
distribution. When this happens, we will observe an average intensity
that will be given by

( )2

0
4 cos /2I I φ< >= < > (10.13)

where angular brackets represent time averaging. Indeed it is shown in
Section 7.2 that if φ(t ) varies randomly with time, the time-averaged
quantity < cos2 (φ/2) > will be 1/2. This is also intuitively obvious because
the function cos2 (φ/2)  will randomly vary between 0 and 1 and the
average value will be 1/2. The resultant intensity will be given by

I = 2 I
0

(10.14)

at all points.
When the phase difference between the two vibrating sources changes

rapidly with time, we say that the two sources are incoherent and when
this happens the intensities just add up. This is indeed what happens
when two separate light sources illuminate a wall.

10.5 INTERFERENCE OF LIGHT WAVES AND YOUNG’S

EXPERIMENT

We will now discuss interference using light waves. If we use two sodium
lamps illuminating two pinholes (Fig. 10.11) we will not observe any
interference fringes. This is because of the fact that the light wave emitted
from an ordinary source (like a sodium lamp) undergoes abrupt phase
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changes in times of the order of 10–10 seconds. Thus
the light waves coming out from two independent
sources of light will not have any fixed phase
relationship and would be incoherent, when this
happens, as discussed in the previous section, the
intensities on the screen will add up.

The British physicist Thomas Young used an
ingenious technique to “lock” the phases of the waves
emanating from S1 and S2. He made two pinholes S1
and S

2
 (very close to each other) on an opaque screen

[Fig. 10.12(a)]. These were illuminated by another
pinholes that was in turn, lit by a bright source. Light
waves spread out from S and fall on both S1 and S2.
S1 and S2 then behave like two coherent sources
because light waves coming out from S

1
 and S

2
 are derived from the

same original source and any abrupt phase change in S will manifest in
exactly similar phase changes in the light coming out from S1 and S2.
Thus, the two sources S1 and S2 will be locked in phase; i.e., they will be
coherent like the two vibrating needle in our water wave example
[Fig. 10.8(a)].

FIGURE 10.11  If two sodium
lamps illuminate two pinholes

S1 and S2, the intensities will add
up and no interference fringes will

be observed on the screen.

Thus spherical waves emanating from S
1
 and S

2
 will produce

interference fringes on the screen GG′, as shown in Fig. 10.12(b). The
positions of maximum and minimum intensities can be calculated by
using the analysis given in Section 10.4 where we had shown that for an
arbitrary point P on the line GG′ [Fig. 10.12(b)] to correspond to a
maximum, we must have

S2P – S1P = nλ;    n = 0, 1, 2 ... (10.15)

Now,

(S2P )2 – (S1P )2 =  

2
2 –

2
d

D x
  

  
+ +    

  
    

2
2 –

2
d

D x
  

  
+    

  
    

= 2x d

(a) (b)

FIGURE 10.12 Young’s arrangement to produce interference pattern.
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where S
1
S

2
 = d and OP = x .  Thus

S
2
P – S

1
P = 

2 1

2
S P+S P

xd
(10.16)

If x, d<<D then negligible error will be introduced if
S2P + S1P (in the denominator) is replaced by 2D. For
example, for d = 0.1 cm, D = 100 cm, OP = 1 cm (which
correspond to typical values for an interference
experiment using light waves), we have

S2P + S1P  =   [(100)2 + (1.05)2]½ + [(100)2 + (0.95)2]½

    ≈200.01 cm
Thus if we replace S

2
P + S

1
P by 2 D, the error involved is

about 0.005%. In this approximation, Eq. (10.16)
becomes

S2P – S1P ≈ (10.17)

Hence we will have constructive interference resulting in
a bright region when

x = x
n
 = 

n D

d

λ
; n = 0, ± 1, ± 2, ... (10.18)

On the other hand, we will have a dark region near

x = x
n
 = (n+ ) ; 0, 1, 2

D
n

d

λ
= ± ± (10.19)

Thus dark and bright bands appear on the screen, as shown in
Fig. 10.13. Such bands are called fringes. Equations (10.18) and (10.19)
show that dark and bright fringes are equally spaced and the distance
between two consecutive bright and dark fringes is given by

β = x
n+1

 –x
n

or  β = 
D

d

λ
(10.20)

which is the expression for the fringe width. Obviously, the central point
O (in Fig. 10.12) will be bright because S1O = S2O and it will correspond
to n = 0. If we consider the line perpendicular to the plane of the paper
and passing through O [i.e., along the y-axis] then all points on this line
will be equidistant from S1 and S2 and we will have a bright central fringe
which is a straight line as shown in Fig. 10.13.  In order to determine the
shape of the interference pattern on the screen we note that a particular
fringe would correspond to the locus of points with a constant value of
S

2
P – S

1
P. Whenever this constant  is an integral multiple of λ, the fringe

will be bright and whenever it is an odd integral multiple of λ/2 it will be
a dark fringe. Now, the locus of the point P lying in the x-y plane such
that S2P – S1P (= ∆) is a constant, is a hyperbola. Thus the fringe pattern
will strictly be a hyperbola; however, if the distance D is very large compared
to the fringe width, the fringes will be very nearly straight lines as shown
in Fig. 10.13.

Thomas Young

(1773 – 1829)  English
physicist, physician and
Egyptologist. Young worked
on a wide variety of
scientific problems, ranging
from the structure of the eye
and the mechanism of
vision to the decipherment
of the Rosetta stone. He
revived the wave theory of
light and recognised that
interference phenomena
provide proof of the wave
properties of light.
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In the double-slit experiment shown in Fig. 10.12, we have taken the
source hole S on the perpendicular bisector of the two slits, which is
shown as the line SO. What happens if the source S is slightly away from
the perpendicular bisector. Consider that the source is moved to some
new point S′ and suppose that Q is the mid-point of S1 and S2. If the
angle S′QS is φ, then the central bright fringe occurs at an angle –φ, on
the other side. Thus, if the source S is on the perpendicular bisector,
then the central fringe occurs at O, also on the perpendicular bisector. If
S is shifted by an angle φ to point S′, then the central fringe appears at a
point O′ at an angle –φ, which means that it is shifted by the same angle
on the other side of the bisector. This also means that the source S ′, the
mid-point Q and the point O′ of the central fringe are in a straight line.

We end this section by quoting from the Nobel lecture of Dennis Gabor*

The wave nature of light was demonstrated convincingly for the
first time in 1801 by Thomas Young by a wonderfully simple
experiment. He let a ray of sunlight into a dark room, placed a

dark screen in front of it, pierced with two small pinholes, and
beyond this, at some distance, a white screen. He then saw two
darkish lines at both sides of a bright line, which gave him
sufficient encouragement to repeat the experiment, this time with
spirit flame as light source, with a little salt in it to produce the

bright yellow sodium light. This time he saw a number of dark
lines, regularly spaced; the first clear proof that light added to
light can produce darkness. This phenomenon is called

FIGURE 10.13 Computer generated fringe pattern produced by two point source S
1
 and S

2
 on the

screen GG′ (Fig. 10.12); (a) and (b) correspond to d = 0.005 mm and 0.025 mm, respectively (both
figures correspond to D = 5 cm and λ = 5 × 10–5 cm.) (Adopted from OPTICS by A. Ghatak, Tata

McGraw Hill Publishing Co. Ltd., New Delhi, 2000.)

* Dennis Gabor received the 1971 Nobel Prize in Physics for discovering the
principles of holography.
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interference. Thomas Young had expected it because he believed
in the wave theory of light.

We should mention here that the fringes are straight lines although
S1 and S2 are point sources. If we had slits instead of the point sources
(Fig. 10.14), each pair of points would have produced straight line fringes
resulting in straight line fringes with increased intensities.

Example 10.3 Two slits are made one millimetre apart and the screen
is placed one metre away. What is the fringe separation when blue-
green light of wavelength 500 nm is used?

Solution Fringe spacing =
–7

–3

1 5 10
m

1 10

D

d

λ × ×
=

×

      = 5 × 10–4 m = 0.5 mm

Example 10.4 What is the effect on the interference fringes in a
Young’s double-slit experiment due to each of the following operations:

(a) the screen is moved away from the plane of the slits;

(b) the (monochromatic) source is replaced by another
(monochromatic) source of shorter wavelength;

(c) the separation between the two slits is increased;

(d) the source slit is moved closer to the double-slit plane;
(e) the width of the source slit is increased;
(f ) the monochromatic source is replaced by a source of white

light?

FIGURE 10.14 Photograph and the graph of the intensity
distribution in Young’s double-slit experiment.

 E
X

A
M

P
L
E
 1

0
.4

In
te

ra
c
ti

v
e
 
a
n

im
a
ti

o
n

 
o

f 
Y
o

u
n

g
’s

 
e
x
p

e
ri

m
e
n

t

h
tt
p
:/
/v

sg
.q

u
as

ih
o
m

e.
co

m
/i
n
te

rf
er

.h
tm

l

© N
CERT 

no
t to

 be
 re

pu
bli

sh
ed



367

Wave Optics

 E
X

A
M

P
L
E 1

0
.4

( In each operation, take all parameters, other than the one specified,
to remain unchanged.)

Solution

(a) Angular separation of the fringes remains constant
(= λ/d ). The actual   separation of the fringes increases in
proportion to the distance of the screen from the plane of the
two slits.

(b) The separation of the fringes (and also angular separation)
decreases. See, however, the condition mentioned in (d) below.

(c) The separation of the fringes (and also angular separation)
decreases. See, however, the condition mentioned in (d) below.

(d) Let s  be the size of the source and S  its distance from the plane of
the two slits. For interference fringes to be seen, the condition
s/S < λ/d should be satisfied; otherwise, interference patterns
produced by different parts of the source overlap and no fringes
are seen. Thus, as S decreases (i.e., the source slit is brought
closer), the interference pattern gets less and less sharp, and
when the source is brought too close for this condition to be valid,
the fringes disappear. Till this happens, the fringe separation
remains fixed.

(e) Same as in (d). As the source slit width increases, fringe pattern
gets less and less sharp. When the source slit is so wide that the
condition s/S ≤ λ/d is not satisfied, the interference pattern
disappears.

(f ) The interference patterns due to different component colours of
white light overlap (incoherently). The central bright fringes for
different colours are at the same position. Therefore, the central
fringe is white. For a point P for which S

2
P –S

1
P = λ

b
/2, where λ

b

(≈ 4000 Å) represents the wavelength for the blue colour, the blue
component will be absent and the fringe will appear red in colour.
Slightly farther away where S2Q–S1Q = λ

b
 = λ

r
/2 where λ

r
 (≈ 8000 Å)

is the wavelength for the red colour, the fringe will be predominantly
blue.

Thus, the fringe closest on either side of the central white fringe
is red and the farthest will appear blue. After a few fringes, no
clear fringe pattern is seen.

10.6  DIFFRACTION

If we look clearly at the shadow cast by an opaque object, close to the
region of geometrical shadow, there are alternate dark and bright regions
just like in interference. This happens due to the phenomenon of
diffraction. Diffraction is a general characteristic exhibited by all types of
waves, be it sound waves, light waves, water waves or matter waves. Since
the wavelength of light is much smaller than the dimensions of most
obstacles; we do not encounter diffraction effects of light in everyday
observations. However, the finite resolution of our eye or of optical
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instruments such as telescopes or microscopes is limited due to the
phenomenon of diffraction. Indeed the colours that you see when a CD is
viewed is due to diffraction effects. We will now discuss the phenomenon
of diffraction.

10.6.1  The single slit

In the discussion of Young’s experiment, we stated that a single narrow
slit acts as a new source from which light spreads out. Even before Young,
early experimenters – including Newton – had noticed that light spreads
out from narrow holes and slits. It seems to turn around corners and
enter regions where we would expect a shadow. These effects, known as
diffraction, can only be properly understood using wave ideas. After all,
you are hardly surprised to hear sound waves from someone talking
around a corner !

When the double slit in Young’s experiment is replaced by a single
narrow slit (illuminated by a monochromatic source), a broad pattern
with a central bright region is seen. On both sides, there are alternate
dark and bright regions, the intensity becoming weaker away from the
centre (Fig. 10.16). To understand this, go to Fig. 10.15, which shows a
parallel beam of light falling normally on a single slit LN of width a. The
diffracted light goes on to meet a screen. The midpoint of the slit is M.

A straight line through M perpendicular to the slit plane meets the
screen at C. We want the intensity at any point P on the screen. As before,
straight lines joining P to the different points L,M,N, etc., can be treated as
parallel, making an angle θ with the normal MC.

The basic idea is to divide the slit into much smaller parts, and add
their contributions at P with the proper phase differences. We are treating
different parts of the wavefront at the slit as secondary sources. Because
the incoming wavefront is parallel to the plane of the slit, these sources
are in phase.

The path difference NP – LP between the two edges of the slit can be
calculated exactly as for Young’s experiment. From Fig. 10.15,

NP – LP = NQ

   = a sin θ

   ≈ aθ (10.21)

Similarly, if two points M1 and M2 in the slit plane are separated by y, the
path difference M2P – M1P ≈ yθ. We now have to sum up equal, coherent
contributions from a large number of sources, each with a different phase.
This calculation was made by Fresnel using integral calculus, so we omit
it here. The main features of the diffraction pattern can be understood by
simple arguments.

At the central point C on the screen, the angle θ is zero. All path
differences are zero and hence all the parts of the slit contribute in phase.
This gives maximum intensity at C. Experimental observation shown in
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Fig. 10.15 indicates that the intensity has a
central maximum at θ = 0 and other
secondary maxima at θ l (n+1/2) λ/a, and
has minima (zero intensity) at θ l nλ/a,
n = ±1, ±2, ±3, .... It is easy to see why it has
minima at these values of angle. Consider
first the angle θ where the path difference aθ

is λ. Then,

/aθ λ≈ . (10.22)

Now, divide the slit into two equal halves
LM and MN each of size a/2. For every point
M

1
 in LM, there is a point M

2
 in MN such that

M1M2 = a/2. The path difference between M1 and M2 at P = M2P – M1P
= θ a/2 = λ/2 for the angle chosen. This means that the contributions
from M1 and M2 are 180º out of phase and cancel in the direction
θ = λ/a. Contributions from the two halves of the slit LM and MN,
therefore, cancel each other. Equation (10.22) gives the angle at which
the intensity falls to zero. One can similarly show that the intensity is
zero for θ = n λ/a, with n being any integer (except zero!). Notice that the
angular size of the central maximum increases when the slit width a
decreases.

It is also easy to see why there are maxima at θ  = (n + 1/2) λ/a and
why they go on becoming weaker and weaker with increasing n. Consider
an angle θ = 3λ/2a which is midway between two of the dark fringes.
Divide the slit into three equal parts. If we take the first two thirds of the
slit, the path difference between the two ends would be

2 2 3
3 3 2

a
a

a

λ
θ λ× = × = (10.23)

The first two-thirds of the slit can therefore be divided
into two halves which have a λ/2 path difference. The
contributions of these two halves cancel in the same manner
as described earlier. Only the remaining one-third of the
slit contributes to the intensity at a point between the two
minima. Clearly, this will be much weaker than the central
maximum (where the entire slit contributes in phase). One
can similarly show that there are maxima at (n + 1/2) λ/a

with n = 2, 3, etc. These become weaker with increasing n,
since only one-fifth, one-seventh, etc., of the slit contributes
in these cases. The photograph and intensity pattern
corresponding to it is shown in Fig. 10.16.

There has been prolonged discussion about difference
between intereference and diffraction among scientists since
the discovery of these phenomena. In this context, it is

FIGURE 10.16 Intensity
distribution and photograph of

fringes due to diffraction
at single slit.

FIGURE 10.15  The geometry of path
differences for diffraction by a single slit.
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interesting to note what Richard Feynman* has said in his famous
Feynman Lectures on Physics:

No one has ever been able to define the difference between
interference and diffraction satisfactorily. It is just a question

of usage, and there is no specific, important physical difference

between them. The best we can do is, roughly speaking, is to

say that when there are only a few sources, say two interfering

sources, then the result is usually called interference, but if there
is a large number of them, it seems that the word diffraction is

more often used.

In the double-slit experiment, we must note that the pattern on the
screen is actually a superposition of single-slit diffraction from each slit
or hole, and the double-slit interference pattern. This is shown in
Fig. 10.17. It shows a broader diffraction peak in which there appear
several fringes of smaller width due to double-slit interference. The
number of interference fringes occuring in the broad diffraction peak
depends on the ratio d/a, that is the ratio of the distance between the
two slits to the width of a slit. In the limit of a becoming very small, the
diffraction pattern will become very flat and we will obsrve the two-slit
interference pattern [see Fig. 10.13(b)].

* Richand Feynman was one of the recipients of the 1965 Nobel Prize in Physics
for his fundamental work in quantum electrodynamics.

Example 10.5 In Example 10.3, what should the width of each slit be
to obtain 10 maxima of the double slit pattern within the central
maximum of the single slit pattern?

Solution  We want  ,a
a

λ
θ λ θ= =

10 2
d a

λ λ
=  0 2 mm

5
d

a = = .

Notice that the wavelength of light and distance of the screen do not
enter in the calculation of a.

In the double-slit interference experiment of Fig. 10.12, what happens
if we close one slit? You will see that it now amounts to a single slit. But
you will have to take care of some shift in the pattern. We now have a
source at S, and only one hole (or slit) S

1
 or S

2
. This will produce a single-

FIGURE 10.17 The actual double-slit interference pattern.
The envelope shows the single slit diffraction.
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slit diffraction pattern on the screen. The centre of the central bright fringe
will appear at a point which lies on the straight line SS

1
 or SS

2
, as the

case may be.
We now compare and contrast the interference pattern with that seen

for a coherently illuminated single slit (usually called the single slit
diffraction pattern).
(i) The interference pattern has a number of equally spaced  bright and

dark bands. The diffraction pattern has a central bright maximum
which is twice as wide as the other maxima. The intensity falls as we
go to successive maxima away from the centre, on either side.

(ii) We calculate the interference pattern by superposing two waves
originating from the two narrow slits. The diffraction pattern is a
superposition of a continuous family of waves originating from each
point on a single slit.

(iii) For a single slit of width a, the first null of the interference pattern
occurs at  an angle of λ/a. At the same angle of λ/a, we get a maximum
(not a null) for two narrow slits separated by a distance a.

One must understand that both d and a have to be quite small, to be
able to observe good interference and diffraction patterns. For example,
the separation d between the two slits must be of the order of a milimetre
or so. The width a of each slit must be even smaller, of the order of 0.1 or
0.2 mm.

In our discussion of Young’s experiment and the single-slit diffraction,
we have assumed that the screen on which the fringes are formed is at a
large distance. The two or more paths from the slits to the screen were
treated as parallel. This situation also occurs when we place a converging
lens after the slits and place the screen at the focus. Parallel paths from
the slit are combined at a single point on the screen. Note that the lens

does not introduce any extra path differences in a parallel beam. This
arrangement is often used since it gives more intensity than placing the
screen far away. If f is the focal length of the lens, then we can easily work
out  the size of the central bright maximum. In terms of angles, the
separation of the central maximum from the first null of the diffraction
pattern is λ/a . Hence, the size on the screen will be f λ/a.

10.6.2  Seeing the single slit diffraction pattern

It is surprisingly easy to see the single-slit diffraction pattern for oneself.
The equipment needed can be found in most homes –– two razor blades
and one clear glass electric bulb preferably with a straight filament. One
has to hold the two blades so that the edges are parallel and have a
narrow slit in between. This is easily done with the thumb and forefingers
(Fig. 10.18).

Keep the slit parallel to the filament, right in front of the eye. Use
spectacles if you normally do. With slight adjustment of the width of the
slit and the parallelism of the edges, the pattern should be seen with its
bright and dark bands. Since the position of all the bands (except the
central one) depends on wavelength, they will show some colours. Using
a filter for red or blue will make the fringes clearer. With both filters
available, the wider fringes for red compared to blue can be seen.

FIGURE 10.18
Holding two blades to
form a single slit. A
bulb filament viewed
through this shows

clear diffraction
bands.
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In this experiment, the filament plays the role of the first slit S in
Fig. 10.16. The lens of the eye focuses the pattern on the screen (the
retina of the eye).

With some effort, one can cut a double slit in an aluminium foil with
a blade. The bulb filament can be viewed as before to repeat Young’s
experiment. In daytime, there is another suitable bright source subtending
a small angle at the eye. This is the reflection of the Sun in any shiny
convex surface (e.g., a cycle bell). Do not try direct sunlight – it can damage
the eye and will not give fringes anyway as the Sun subtends an angle
of (1/2)º.

In interference and diffraction, light energy is redistributed. If it

reduces in one region, producing a dark fringe, it increases in another

region, producing a bright fringe. There is no gain or loss of energy,

which is consistent with the principle of conservation of energy.

10.6.3  Resolving power of optical instruments

In Chapter 9 we had discussed about telescopes. The angular resolution
of the telescope is determined by the objective of the telescope. The stars
which are not resolved in the image produced by the objective cannot be
resolved by any further magnification produced by the eyepiece. The
primary purpose of the eyepiece is to provide magnification of the image
produced by the objective.

Consider a parallel beam of light falling on a convex lens. If the lens is
well corrected for aberrations, then geometrical optics tells us that the
beam will get focused to a point. However, because of diffraction, the
beam instead of getting focused to a point gets focused to a spot of finite
area. In this case the effects due to diffraction can be taken into account
by considering a plane wave incident on a circular aperture followed by
a convex lens (Fig. 10.19). The analysis of the corresponding diffraction
pattern is quite involved; however, in principle, it is similar to the analysis
carried out to obtain the single-slit diffraction pattern. Taking into account
the effects due to diffraction, the pattern on the focal plane would consist
of a central bright region surrounded by concentric dark and bright rings
(Fig. 10.19). A detailed analysis shows that the radius of the central bright
region is approximately given by

0

1.22 0.61
2

f f
r

a a

λ λ
≈ = (10.24)

FIGURE 10.19 A parallel beam of light is incident on a convex lens.
Because of diffraction effects, the beam gets focused to a

spot of radius ≈ 0.61 λf/a .
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where f  is the focal length of the lens and 2a is the diameter of the circular
aperture or the diameter of the lens, whichever is smaller. Typically if

λ ≈  0.5 µm,  f ≈  20 cm  and  a ≈  5 cm

we have

r0  ≈  1.2 µm
Although the size of the spot is very small, it plays an important role

in determining the limit of resolution of optical instruments like a telescope
or a microscope.  For the two stars to be just resolved

0

0.61 f
f r

a

λ
θ∆ ≈ ≈

implying

0.61
a

λ
θ∆ ≈ (10.25)

Thus ∆θ will be small if the diameter of the objective is large. This
implies that the telescope will have better resolving power if a is large. It
is for this reason that for better resolution, a telescope must have a large
diameter objective.

Example 10.6 Assume that light of wavelength 6000Å is coming from
a star. What is the limit of resolution of a telescope whose objective
has a diameter of 100 inch?

Solution  A 100 inch telescope implies that 2a  = 100 inch
= 254 cm. Thus if,

λ ≈ 6000Å = 6×10–5 cm
then

–5
–70.61 6 10

2.9 10
127

θ
× ×

∆ ≈ ≈ × radians

We can apply a similar argument to the objective lens of a microscope.
In this case, the object is placed slightly beyond f, so that a real image is
formed at a distance v [Fig. 10.20]. The magnification – ratio of
image size to object size – is given by m l v/f. It can be seen from
Fig. 10.20 that

D/f l 2 tan β (10.26)
where 2β is the angle subtended by the diameter of the objective lens at
the focus of the microscope.
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FIGURE 10.20 Real image formed by the objective lens of the microscope.
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When the separation between two points in a microscopic specimen
is comparable to the wavelength λ of the light, the diffraction effects
become important. The image of a point object will again be a diffraction
pattern whose size in the image plane will be

1.22
v v

D

λ
θ

  
=

  
  

(10.27)

Two objects whose images are closer than this distance will not be
resolved, they will be seen as one. The corresponding minimum
separation, dmin, in the object plane is given by

dmin =  
1 22

v m
D

 λ.    

    
  

  

      = 
1 22

.
v

D m

. λ

         = 
1 22 f

D

.  λ
(10.28)

Now, combining Eqs. (10.26) and (10.28), we get

min

1.22
2tan

d
λ

  β
=

DETERMINE THE RESOLVING POWER OF YOUR EYE

You can estimate the resolving power of your eye with a simple experiment. Make
black stripes of equal width separated by white stripes; see figure here. All the black
stripes should be of equal width, while the width of the intermediate white stripes should
increase as you go from the left to the right. For example, let all black stripes have a width
of 5 mm. Let the width of the first two white stripes be 0.5 mm each, the next two white
stripes be 1 mm each, the next two 1.5 mm each, etc. Paste this pattern on a wall in a
room or laboratory, at the height of your eye.

Now watch the pattern, preferably with one eye. By moving away or closer to the wall,
find the position where you can just see some two black stripes as separate stripes. All
the black stripes to the left of this stripe would merge into one another and would not be
distinguishable. On the other hand, the black stripes to the right of this would be more
and more clearly visible. Note the width d of the white stripe which separates the two
regions, and measure the distance D of the wall from your eye. Then d/D is the resolution
of your eye.

You have watched specks of dust floating in air in a sunbeam entering through your
window. Find the distance (of a speck) which you can clearly see and distinguish from a
neighbouring speck. Knowing the resolution of your eye and the distance of the speck,
estimate the size of the speck of dust.
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1.22
2sin

λ

β
� (10.29)

If the medium between the object and the objective lens is not air but
a medium of refractive index n, Eq. (10.29)  gets  modified to

min

1.22
2 sin

d
n

λ

β
= (10.30)

The product n sinβ is called the numerical aperture and is sometimes
marked on the objective.

The resolving power of the microscope is given by the reciprocal of
the minimum separation of two points seen as distinct. It can be seen
from Eq. (10.30) that the resolving power can be increased by choosing a
medium of higher refractive index. Usually an oil having a refractive index
close to that of the objective glass is used. Such an arrangement is called
an ‘oil immersion objective’. Notice that it is not possible to make sinβ

larger than unity. Thus, we see that the resolving power of a microscope
is basically determined by the wavelength of the light used.

There is a likelihood of confusion between resolution and
magnification, and similarly between the role of a telescope and a
microscope to deal with these parameters. A telescope produces images
of far objects nearer to our eye. Therefore objects which are not resolved
at far distance, can be resolved by looking at them through a telescope.
A microscope, on the other hand, magnifies objects (which are near to
us) and produces their larger image. We may be looking at two stars or
two satellites of a far-away planet, or we may be looking at different
regions of a living cell. In this context, it is good to remember that a
telescope resolves whereas a microscope magnifies.

10.6.4  The validity of ray optics

An aperture (i.e., slit or hole) of size a illuminated by a parallel beam
sends diffracted light into an angle of approximately ≈ λ/a . This is the
angular size of the bright central maximum. In travelling a distance z,
the diffracted beam therefore acquires a width zλ/a due to diffraction. It
is interesting to ask at what value of z the spreading due to diffraction
becomes comparable to the size a of the aperture. We thus approximately
equate zλ/a with a. This gives the distance beyond which divergence of
the beam of width a becomes significant. Therefore,

2a
z

λ
� (10.31)

We define a quantity z
F

  called the Fresnel distance by the following
equation

2 /Fz a λ�

Equation (10.31) shows that for distances much smaller than z
F

 , the
spreading due to diffraction is smaller compared to the size of the beam.
It becomes comparable when the distance is approximately  zF . For
distances much greater than zF, the spreading due to diffraction
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dominates over that due to ray optics (i.e., the size a of the aperture).
Equation (10.31) also shows that ray optics is valid in the limit of
wavelength tending to zero.

Example 10.7 For what distance is ray optics a good approximation
when the aperture is 3 mm wide and the wavelength is 500 nm?

Solution  
( )

2–32

–7

3 10
18 m

5 10
F

a
z

λ

×
= = =

×

This example shows that even with a small aperture, diffraction
spreading can be neglected for rays many metres in length. Thus, ray
optics is valid in many common situations.

10.7  POLARISATION

Consider holding a long string that is held horizontally, the other end of
which is assumed to be fixed. If we move the end of the string up and
down in a periodic manner, we will generate a wave propagating  in the
+x direction (Fig. 10.21). Such a wave could be described by the following
equation

FIGURE 10.21 (a) The curves represent the displacement of a string at
t = 0 and at t = ∆t, respectively when a sinusoidal wave is propagating

in the +x-direction. (b) The curve represents the time variation
of the displacement at x = 0 when a sinusoidal wave is propagating

in the +x-direction. At  x = ∆x, the time variation of the
displacement will be slightly displaced to the right.

© N
CERT 

no
t to

 be
 re

pu
bli

sh
ed



377

Wave Optics

y (x,t ) = a sin (kx – ωt) (10.32)

where a and ω (= 2πν ) represent the amplitude and the angular frequency
of the wave, respectively; further,

2
k

λ
π

= (10.33)

represents the wavelength associated with the wave. We had discussed
propagation of such waves in Chapter 15 of Class XI textbook. Since the
displacement (which is along the y direction) is at right angles to the
direction of propagation of the wave, we have what is known as a
transverse wave. Also, since the displacement is in the y direction, it is
often referred to as a y-polarised wave. Since each point on the string
moves on a straight line, the wave is also referred to as a linearly polarised
wave. Further, the string always remains confined to the x-y plane and
therefore it is also referred to as a plane polarised wave.

In a similar manner we can consider the vibration of the string in the
x-z plane generating a z-polarised wave whose displacement will be given
by

z (x,t ) = a sin (kx – ωt ) (10.34)

It should be mentioned that the linearly polarised waves [described
by Eqs. (10.33) and (10.34)] are all transverse waves; i.e., the
displacement of each point of the string is always at right angles to the
direction of propagation of the wave. Finally, if the plane of vibration of
the string is changed randomly in very short intervals of time, then we
have what is known as an unpolarised wave. Thus, for an unpolarised
wave the displacement will be randomly changing with time though it
will always be perpendicular to the direction of propagation.

Light waves are transverse in nature; i.e., the electric field associated
with a propagating light wave is always at right angles to the direction of
propagation of the wave. This can be easily demonstrated using a simple
polaroid. You must have seen thin plastic like sheets, which are called
polaroids. A polaroid consists of long chain molecules aligned in a
particular direction. The electric vectors (associated with the propagating
light wave) along the direction of the aligned molecules get absorbed.
Thus, if an unpolarised light wave is incident on such a polaroid then
the light wave will get linearly polarised with the electric vector oscillating
along a direction perpendicular to the aligned molecules; this direction
is known as the pass-axis of the polaroid.

Thus, if the light from an ordinary source (like a sodium lamp) passes
through a polaroid sheet P

1,
 it is observed that its intensity is reduced by

half. Rotating P1 has no effect on the transmitted beam and transmitted
intensity remains constant. Now, let an identical piece of polaroid P2 be
placed before P

1
. As expected, the light from the lamp is reduced in

intensity on passing through P2 alone. But now rotating P1 has a dramatic
effect on the light coming from P

2
. In one position, the intensity transmitted
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by P2 followed by P1 is nearly zero. When turned by 90º from this position,
P

1
 transmits nearly the full intensity emerging from P

2
 (Fig. 10.22).

The above experiment can be easily understood by assuming that
light passing through the polaroid P

2
 gets polarised along  the pass-axis

of  P
2
. If the pass-axis of  P

2 
makes an angle θ with the pass-axis of  P

1
,

then  when the polarised beam passes through the polaroid P
2
, the

component  E cos θ  (along the pass-axis of P2) will pass through P2.
Thus, as we rotate the polaroid P1 (or P2), the intensity will vary as:

I = I
0
 cos2θ (10.35)

where I
0
 is the intensity of the polarized light after passing through

P
1
.
 
This is known as Malus’ law. The above discussion shows that the

intensity coming out of a single polaroid is half of the incident intensity.
By putting a second polaroid, the intensity can be further controlled
from 50% to zero of the incident intensity by adjusting the angle between
the pass-axes of two polaroids.

Polaroids can be used to control the intensity, in sunglasses,
windowpanes, etc. Polaroids are also used in photographic cameras and
3D movie cameras.

Example 10.8 Discuss the intensity of transmitted light when a
polaroid sheet is rotated between two crossed polaroids?

Solution Let I0 be the intensity of polarised light after passing through
the first polariser P

1
. Then the intensity of light after passing through

second polariser P2 will be
2

0cosI I θ= ,

FIGURE 10.22 (a) Passage of light through two polaroids P2 and P1. The
transmitted fraction falls from 1 to 0 as the angle between them varies

from  0º to 90º. Notice that the light seen through a single polaroid
P1 does not vary with angle. (b) Behaviour of the electric vector

when light passes through two polaroids. The transmitted
polarisation is the component parallel to the polaroid axis.

The double arrows show the oscillations of the electric vector.
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where θ is the angle between pass axes of P
1
 and P

2
. Since P

1
 and P

3
are crossed the angle between the pass axes of P2 and P3 will be
(π/2–θ ). Hence the intensity of light emerging from P3 will be

2 2
0cos cos –

2
I I θ θ

π  
=   

  

  = I0 cos2
θ  sin2

θ =(I0/4) sin22θ

Therefore, the transmitted intensity will be maximum when θ = π/4.

10.7.1  Polarisation by scattering

The light from a clear blue portion of the sky shows a rise and fall of
intensity when viewed through a polaroid which is rotated. This is nothing
but sunlight, which has changed its direction (having been scattered) on
encountering the molecules of the earth’s atmosphere. As Fig. 10.23(a)
shows, the incident sunlight is unpolarised. The dots stand for polarisation
perpendicular to the plane of the figure. The double arrows show
polarisation in the plane of the figure. (There is no phase relation between
these two in unpolarised light). Under the influence of the electric field of
the incident wave the electrons in the molecules acquire components of
motion in both these directions. We have drawn an observer looking at
90° to the direction of the sun. Clearly, charges accelerating parallel to
the double arrows do not radiate energy towards this observer since their
acceleration has no transverse component. The radiation scattered by
the molecule is therefore represented by dots. It is polarised
perpendicular to the plane of the figure. This explains the polarisation of
scattered light from the sky.

FIGURE 10.23 (a) Polarisation of the blue scattered light from the sky.
The incident sunlight is unpolarised (dots and arrows). A typical

molecule is shown. It scatters light by 90º polarised normal to
the plane of the paper (dots only). (b) Polarisation of light

reflected from a transparent medium at the Brewster angle
(reflected ray perpendicular to refracted ray).

The scattering of light by molecules was intensively investigated by
C.V. Raman and his collaborators in Kolkata in the 1920s. Raman was
awarded the Nobel Prize for Physics in 1930 for this work.
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A SPECIAL CASE OF TOTAL TRANSMISSION

When light is incident on an interface of two media, it is observed that some part of it
gets reflected and some part gets transmitted. Consider a related question: Is it possible

that under some conditions a monochromatic beam of light incident on a surface
(which is normally reflective) gets completely transmitted with no reflection? To your
surprise, the answer is yes.

Let us try a simple experiment and check what happens. Arrange a laser, a good
polariser, a prism and screen as shown in the figure here.

Let the light emitted by the laser source pass through the polariser and be incident
on the surface of the prism at the Brewster’s  angle of incidence i

B
. Now rotate the

polariser carefully and you will observe that for a specific alignment of the polariser, the
light incident on the prism is completely transmitted and no light is reflected from the
surface of the prism. The reflected spot will completely vanish.

10.7.2  Polarisation by reflection

Figure 10.23(b) shows light reflected from a transparent medium, say,
water. As before, the dots and arrows indicate that both polarisations are
present in the incident and refracted waves. We have drawn a situation
in which the reflected wave travels at right angles to the refracted wave.
The oscillating electrons in the water produce the reflected wave. These
move in the two directions transverse to the radiation from wave in the
medium, i.e., the refracted wave. The arrows are parallel to the direction
of the reflected wave. Motion in this direction does not contribute to the
reflected wave. As the figure shows, the reflected light is therefore linearly
polarised perpendicular to the plane of the figure (represented by dots).
This can be checked by looking at the reflected light through an analyser.
The transmitted intensity will be zero when the axis of the analyser is in
the plane of the figure, i.e., the plane of incidence.

When unpolarised light is incident on the boundary between two
transparent media, the reflected light is polarised with its electric vector
perpendicular to the plane of incidence when the  refracted and reflected
rays make a right angle with each other. Thus we have seen that when
reflected wave is perpendicular to the refracted wave, the reflected wave
is a totally polarised wave. The angle of incidence in this case is called
Brewster’s angle and is denoted by iB. We can see that iB is related to the
refractive index of the denser medium. Since we have iB+r = π/2, we get
from Snell’s law

( )
sin sin
sin sin /2 –

B B

B

i i

r i
µ = =

π
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sin
tan

cos
B

B

B

i
i

i
= = (10.36)

This is known as Brewster’s law.

Example 10.9 Unpolarised light is incident on a plane glass surface.
What should be the angle of incidence so that the reflected and
refracted rays are perpendicular to each other?

Solution For i + r to be equal to π/2, we should have tan i
B
 = µ = 1.5.

This gives iB = 57°. This is the Brewster’s angle for air to glass
interface.

For simplicity, we have discussed scattering of light by 90º, and
reflection at the Brewster angle. In this special situation, one of the two
perpendicular components of the electric field is zero. At other angles,
both components are present but one is stronger than the other. There is
no stable phase relationship between the two perpendicular components
since these are derived from two perpendicular components of an
unpolarised beam. When such light is viewed through a rotating analyser,
one sees a maximum and a minimum of intensity but not complete
darkness. This kind of light is called partially polarised.

Let us try to understand the situation. When an unpolarised beam of
light is incident at the Brewster’s angle on an interface of two media, only
part of light with electric field vector perpendicular to the plane of
incidence will be reflected. Now by using a good polariser, if we completely
remove all the light with its electric vector perpendicular to the plane of
incidence and let this light be incident on the surface of the prism at
Brewster’s angle, you will then observe no reflection and there will be
total transmission of light.

We began this chapter by pointing out that there are some phenomena
which can be explained only by the wave theory. In order to develop a
proper understanding, we first described how some phenomena like
reflection and refraction, which were studied on this basis of Ray Optics
in Chapter 9, can also be understood on the basis of Wave Optics. Then
we described Young’s double slit experiment which was a turning point
in the study of optics. Finally, we described some associated points such
as diffraction, resolution, polarisation, and validity of ray optics. In the
next chapter, you will see how new experiments led to new theories at
the turn of the century around 1900 A.D.

SUMMARY

1. Huygens’ principle tells us that each point on a wavefront is a source
of secondary waves, which add up to give the wavefront at a later time.

2. Huygens’ construction tells us that the new wavefront is the forward
envelope of the secondary waves. When the speed of light is
independent of direction, the secondary waves are spherical. The rays
are then perpendicular to both the wavefronts and the time of travel
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is the same measured along any ray. This principle leads to the well
known laws of reflection and refraction.

3. The principle of superposition of waves applies whenever two or more
sources of light illuminate the same point. When we consider the
intensity of light due to these sources at the given point, there is an
interference term in addition to the sum of the individual intensities.
But this term is important only if it has a non-zero average, which
occurs only if the sources have the same frequency and a stable
phase difference.

4. Young’s double slit of separation d gives equally spaced fringes of
angular separation λ/d. The source, mid-point of the slits, and central
bright fringe lie in a straight line. An extended source will destroy
the fringes if it subtends angle more than λ/d  at the slits.

5. A single slit of width a gives a diffraction pattern with a central

maximum. The intensity falls to zero at angles of 
2

, ,
a a

λ λ
± ±  etc.,

with successively weaker secondary maxima in between. Diffraction
limits the angular resolution of a telescope to λ/D where D is the
diameter. Two stars closer than this give strongly overlapping images.
Similarly, a microscope objective subtending angle 2β  at the focus,
in a medium of refractive index n, will just separate two objects spaced
at a distance λ/(2n sin β), which is the resolution limit of a
microscope. Diffraction determines the limitations of the concept of
light rays. A beam of width a travels a distance a2/λ, called the Fresnel
distance, before it starts to spread out due to diffraction.

6. Natural light, e.g., from the sun is unpolarised. This means the electric
vector takes all possible directions in the transverse plane, rapidly
and randomly, during a measurement. A polaroid transmits only one
component (parallel to a special axis). The resulting light is called
linearly polarised or plane polarised. When this kind of light is viewed
through a second polaroid  whose axis turns through 2π, two maxima
and minima of intensity are seen. Polarised light can also be produced
by reflection at a special angle (called the Brewster angle) and by
scattering through π/2 in the earth’s atmosphere.

POINTS TO PONDER

1. Waves from a point source spread out in all directions, while light was
seen to travel along  narrow  rays. It required the insight and experiment
of Huygens, Young and Fresnel to understand how a wave theory could
explain all aspects of the behaviour of light.

2. The crucial new feature of waves is interference of amplitudes from different
sources which can be both constructive and destructive, as shown in
Young’s experiment.

3. Even a wave falling on single slit should be regarded as a large number of
sources which interefere constructively in the forward direction (θ = 0),
and destructively in other directions.

4. Diffraction phenomena define the limits of ray optics. The limit of the
ability of microscopes and telescopes to distinguish very close objects is
set by the wavelength of light.

5. Most interference and diffraction effects exist even for longitudinal waves
like sound in air. But polarisation phenomena are special to transverse
waves like light waves.
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EXERCISES

10.1 Monochromatic light of wavelength 589 nm is incident from air on a
water surface. What are the wavelength, frequency and speed of
(a) reflected, and (b) refracted light?  Refractive index of water is
1.33.

10.2 What is the shape of the wavefront in each of the following cases:

(a) Light diverging from a point source.

(b) Light emerging out of a convex lens when a point source is placed
at its focus.

(c) The portion of the wavefront of light from a distant star intercepted
by the Earth.

10.3 (a) The refractive index of glass is 1.5. What is the speed of light in
glass? (Speed of light in vacuum is 3.0 × 108 m s–1)

(b) Is the speed of light in glass independent of the colour of light?  If
not, which of  the two colours red and violet travels slower in a
glass prism?

10.4 In a Young’s double-slit experiment, the slits are separated by
0.28 mm and the screen is placed 1.4 m away. The distance between
the central bright fringe and the fourth bright fringe is measured
to be 1.2 cm. Determine the wavelength of light used in the
experiment.

10.5 In Young’s double-slit experiment using monochromatic light of
wavelength λ, the intensity of light at a point on the screen where
path difference is λ, is K units. What is the intensity of light at a
point where path difference is λ/3?

10.6 A beam of light consisting of two wavelengths, 650 nm and 520 nm,
is used to obtain interference fringes in a Young’s double-slit
experiment.

(a) Find the distance of the third bright fringe on the screen from
the central maximum for wavelength 650 nm.

(b) What is the least distance from the central maximum where the
bright fringes due to both the wavelengths coincide?

10.7 In a double-slit experiment the angular width of a fringe is found to
be 0.2° on a screen placed 1 m away. The wavelength of light used is
600 nm. What will be the angular width of the fringe if the entire
experimental apparatus is immersed in water? Take refractive index
of water to be 4/3.

10.8 What is the Brewster angle for air to glass transition? (Refractive
index of glass = 1.5.)

10.9 Light of wavelength 5000 Å falls on a plane reflecting surface. What
are the wavelength and frequency of the reflected light?  For what
angle of incidence is the reflected ray normal to the incident ray?

10.10 Estimate the distance for which ray optics is good approximation
for an aperture of 4 mm and wavelength 400 nm.
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ADDITIONAL EXERCISES

10.11 The 6563 Å Hα line emitted by hydrogen in a star is found to be red-
shifted by 15 Å. Estimate the speed with which the star is receding
from the Earth.

10.12 Explain how Corpuscular theory predicts the speed of light in a
medium, say, water, to be greater than the speed of light in vacuum.
Is the prediction confirmed by experimental determination of the
speed of light in water?  If not, which alternative picture of light is
consistent with experiment?

10.13 You have learnt in the text how Huygens’ principle leads to the laws
of reflection and refraction. Use the same principle to deduce directly
that a point object placed in front of a plane mirror produces a
virtual image whose distance from the mirror is equal to the object
distance from the mirror.

10.14 Let us list some of the factors, which could possibly influence the
speed of wave propagation:

(i) nature of the source.

(ii) direction of propagation.

(iii) motion of the source and/or observer.

(iv) wavelength.

(v) intensity of the wave.

On which of these factors, if any, does

(a) the speed of light in vacuum,

(b) the speed of light in a medium (say, glass or water),

depend?

10.15 For sound waves, the Doppler formula for frequency shift differs
slightly between the two situations: (i) source at rest; observer
moving, and (ii) source moving; observer at rest. The exact Doppler
formulas for the case of light waves in vacuum are, however, strictly
identical for these situations. Explain why this should be so. Would
you expect the formulas to be strictly identical for the two situations
in case of light travelling in a medium?

10.16 In double-slit experiment using light of wavelength 600 nm, the
angular width of a fringe formed on a distant screen is 0.1º. What is
the spacing between the two slits?

10.17 Answer the following questions:

(a) In a single slit diffraction experiment, the width of the slit is
made double the original width. How does this affect the size
and intensity of the central diffraction band?

(b) In what way is diffraction from each slit related to the
interference pattern in a double-slit experiment?

(c) When a tiny circular obstacle is placed in the path of light from
a distant source, a bright spot is seen at the centre of the shadow
of the obstacle. Explain why?

(d) Two students are separated by a 7 m partition wall in a room
10 m high. If both light and sound waves can bend around
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obstacles, how is it that the students are unable to see each
other even though they can converse easily.

(e) Ray optics is based on the assumption that light travels in a
straight line. Diffraction effects (observed when light propagates
through small apertures/slits or around small obstacles)
disprove this assumption. Yet the ray optics assumption is so
commonly used in understanding location and several other
properties of images in optical instruments. What is the
justification?

10.18 Two towers on top of two hills are 40 km apart. The line joining
them passes 50 m above a hill halfway between the towers. What is
the longest wavelength of radio waves, which can be sent between
the towers without appreciable diffraction effects?

10.19 A parallel beam of light of wavelength 500 nm falls on a narrow slit
and the resulting diffraction pattern is observed on a screen 1 m
away. It is observed that the first minimum is at a distance of 2.5
mm from the centre of the screen. Find the width of the slit.

10.20 Answer the following questions:

(a) When a low flying aircraft passes overhead, we sometimes notice
a slight shaking of the picture on our TV screen. Suggest a
possible explanation.

(b) As you have learnt in the text, the principle of linear
superposition of wave displacement is basic to understanding
intensity distributions in diffraction and interference patterns.
What is the justification of this principle?

10.21 In deriving the single slit diffraction pattern, it was stated that the
intensity is zero at angles of nλ/a. Justify this by suitably dividing
the slit to bring out the cancellation.
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