DAV PUBLIC SCHOOL, POKHARIPUT PSVT EXAMINATION, 2021-22

- Check that this question paper contains 06 Printed pages.
- Check that this question paper contains 20 questions.
- Write down the Serial Number of the question in the left side of the margin before attempting it.

CLASS - XII

SUB: CHEMISTRY

Time: 1.5 Hours

Maximum Marks: 35

General instruction:

- All questions are compulsory.
- Question no.1 carries 4 marks.
- Questions 2-13 carry 1 mark each.
- Questions 14-17 carry 2 marks each.
- Questions 18-19 carry 3 marks each.
- Question no.20 carries 5 marks.

		SECT	TON A (OF	JECTIVE TYPE)	
1.	Read the p	assage give	n below an	d answer the following questions:	1x4
	of atoms is the cell are them. A spa packed (hep the same pl spheres are other and re covered by	described a regular hex ace filling m b) is constitu- ane by six i then packed present the a third laye	s a hexagon agon and the odel of this uted of a sph dentical sph dover the fin second laye r that is ider	requently encountered arrangement al prism. Here the top and bottom of ee atoms are present in between structure called hexagonal closed ere on a flat surface surrounded in eres as closely as possible. Three est layer so that they touch each r. Finally, the second layer is tical to the bottom layer in relative ohere to be 'r'.	
	The follow most appro			ple choice questions. Choose the	
	(i)The num	ber of atom	s in hcp unit	cell is:	
	(a) 4	(b) 6	(c) 12	(d) 17	

	(ii) The volume of this hcp unit cell is:	
	(a) $24\sqrt{2}r^3$ (b) $16\sqrt{2}r^3$ (c) $12\sqrt{2}r^3$ (d) $\frac{64}{3}\sqrt{3}r^3$	
	(iii)The empty space in this hcp unit cell is:	
	(a) 74% (b) 47.6% (c) 32% (d) 26%	
	(iv) Which of the following statement is not true about the hexagonal	
	close packing?	
	(a) The coordination number is 12	
	(b) It has packing efficiency 74%	
	(c) Tetrahedral voids of the second layer are covered by the spheres	
	of the third layer.	
	(d) In this arrangement spheres of the fourth layers are exactly	
	aligned with those of the first layer.	
	OR	
	If N is the number of tetrahedral voids in a close-packed	
	structure, then the number of octahedral voids is:	
	a) N/4 b) 4N c) 2N d) N/2	
Follow	ving questions (No.2-8) are multiple choice questions carrying 1 mark	each.
2.	Alkali metal halides do not show Frenkel defect because	1
	(a) cations and anions have almost equal size	
	(b) there is a large difference in size of cations and anions	
	(c) cations and anions have low coordination number	
	(d) anions cannot be accommodated in voids.	
3.	p-dichlorobenzene has higher melting point than its o- and m- isomers because	1
	(a) p-dichlorobenzene is more polar than o- and m- isomer.	
	(b) p-isomer has a symmetrical crystalline structure.	
	(c) boiling point of p-isomer is more than o- and m-isomer.	
	(d) All of these are correct reasons.	

	OR	
	Which of the following is an example of vic-dihalide?	
	(a)Dichloromethane (b)1,2-Dichloroethane	
	(c)Ethylidene chloride (d)Allyl chloride	
4.	Which of the following will have metal deficiency defect?	1
	(a) NaCl (b) FeO (c) KCl (d) ZnO	
5.	The reaction of toluene with chlorine in presence of FeCl ₃ gives predominantly.	1
	(a) a mixture of o-and p-chlorotoluene (b) benzyl chloride	
	(c) m-chlorotuluene (d) benzoyl chloride	
6.	In which pair most efficient packing is present?	1
	(a) hcp and bcc (b) hcp and ccp	
	(c) bcc and ccp (d) bcc and simple cubic cell	
7.	S _N 1 reaction of alkyl halides lead to	1
	(a) Retention of configuration (b) Racemization	
	(c) Inversion of configuration (d) None of these	
8.	To get n-type of semiconductor, germanium should be doped with	1
	(a) gallium (b) arsenic (c) aluminium (d) boron	
	following questions (Q.No.9-13) a statement of assertion followed by tent of reason is given. Choose the correct answer out of the following s.	
explan b) Ass exp c) Ass	sertion and reason both are correct statements and reason is the correct ation for assertion. ertion and reason are correct but reason is not the correct lanation of assertion. ertion is correct statement but reason is wrong statement.	
	ertion is wrong statement but reason is correct statement	1
9.	Assertion: Crystalline solids are anisotropic.	1
10	Reason: The constituents particles are very closely packed.	1
10.	Assertion: It is difficult to replace chlorine by -OH in chlorobenzene in	1
	comparison to that of chloroethane.	

	Reason: C – Cl bond in chlorobenzene has a partial double character	
	due to resonance.	
11.	Assertion: Graphite is a good conductor of electricity however	1
	diamond belongs to the category of insulators.	
	Reason: Graphite is soft in nature on the other hand diamond is very	
	hard and brittle.	
12.	Assertion: 2,4-dinitro-chlorobenzene is more reactive towards SN	1
	reaction.	
	Reason: Electron donating group at ortho and para position facilitates	
	SN reaction at aromatic ring.	
13.	Assertion: On heating ferromagnetic or ferrimagnetic substances they	1
	become paramagnetic.	
	Reason: The electrons change their spin on heating.	
	OR	
	Assertion: Total number of octahedral voids present in unit cell of	
	cubic close packing including the one that is present at the	
	body center, is four.	
	Reason: Besides the body center there is one octahedral void present at	
	the center of each of the six faces of the unit cell and each of	
	which is shared between two adjacent unit cells.(c)	
	SECTION B	
	llowing questions, Q. No 14 -17 are Short Answer Type I and carry ks each.	
14.	Ferric oxide crystallises in a hexagonal close-packed array of oxide ions with two out of every three octahedral holes occupied by ferric ions. Derive the formula of the ferric oxide.	2
15.	Carry out the following conversions:	1+1
	a) ethane to bromoethane	
	b) benzene to biphenyl	
		1

	OR	
	Give reasons:	
	a) Dipole moment of chlorobenzene is lower than cyclohexyl chloride.	
	b) Grignard's reagent should be prepared under anhydrous condition.	
16.	Account for the following:	1+1
	a) NaCl appears yellow in colour sometimes.	
	b) Electrical conductivity of a metal decreases with rise in temperature.	
17.	Write the IUPAC name of the following compounds:	1+1
	a) CH ₃ CH=CHC(Br)(CH ₃) ₂	
	b) $p-ClC_6H_4CH_2CH(CH_3)_2$	
	SECTION C	
	18-19 are Short Answer Type II and carry 3 marks each.	
2. 110		
18.		3
	An element with molar mass 2.7×10^{-2} kg mol ⁻¹ forms a cubic unit cell with edge length 405 pm. If its density is 2.7×10^3 kg m ⁻³ , what is the nature of the cubic unit cell?	3
18.	An element with molar mass 2.7×10^{-2} kg mol ⁻¹ forms a cubic unit cell with edge length 405 pm. If its density is 2.7×10^3 kg m ⁻³ , what is the nature of the cubic unit cell?	
18.	An element with molar mass 2.7×10^{-2} kg mol ⁻¹ forms a cubic unit cell with edge length 405 pm. If its density is 2.7×10^3 kg m ⁻³ , what is the nature of the cubic unit cell? a) Write the mechanism for the following reaction: $CH_2 = CH_2 + H_2O \xrightarrow{H^+} C_2H_5OH$	
18.	An element with molar mass 2.7×10^{-2} kg mol ⁻¹ forms a cubic unit cell with edge length 405 pm. If its density is 2.7×10^3 kg m ⁻³ , what is the nature of the cubic unit cell? a) Write the mechanism for the following reaction: $CH_2 = CH_2 + H_2O \xrightarrow{H^+} C_2H_5OH$ b) Name the reagent used for conversion of propene to propan-1-ol.	2+1
18.	An element with molar mass 2.7×10^{-2} kg mol ⁻¹ forms a cubic unit cell with edge length 405 pm. If its density is 2.7×10^3 kg m ⁻³ , what is the nature of the cubic unit cell? a) Write the mechanism for the following reaction: $CH_2 = CH_2 + H_2O \xrightarrow{H^+} C_2H_5OH$ b) Name the reagent used for conversion of propene to propan-1-ol. OR Write the structure and IUPAC name of the products formed in the	2+1
18.	An element with molar mass 2.7×10^{-2} kg mol ⁻¹ forms a cubic unit cell with edge length 405 pm. If its density is 2.7×10^3 kg m ⁻³ , what is the nature of the cubic unit cell? a) Write the mechanism for the following reaction: $CH_2 = CH_2 + H_2O \xrightarrow{H^+} C_2H_5OH$ b) Name the reagent used for conversion of propene to propan-1-ol. OR Write the structure and IUPAC name of the products formed in the following reactions:	
18.	An element with molar mass 2.7×10^{-2} kg mol ⁻¹ forms a cubic unit cell with edge length 405 pm. If its density is 2.7×10^3 kg m ⁻³ , what is the nature of the cubic unit cell? a) Write the mechanism for the following reaction: $CH_2 = CH_2 + H_2O \xrightarrow{H^+} C_2H_5OH$ b) Name the reagent used for conversion of propene to propan-1-ol. OR Write the structure and IUPAC name of the products formed in the following reactions: a) Catalytic reduction of butanal	2+1

Q. No-	SECTION D 20 is Long Answer Type carrying 5 marks .			
20.	. Primary alkyl halide C ₄ H ₉ Br (A) reacted with alcoholic KOH to give compound (B). Compound (B) is reacted with HBr to give (C) which is an isomer of (A). When (A) is reacted with sodium metal it gives compound (D), C ₈ H ₁₈ which is different from the compound formed when n-butyl bromide is reacted with sodium.			
	a) Give the structural formula of (A).			
	b) Identify B, C & D			
	c) Write the equations involved in all the reactions.			
	OR			
	a) What happens when:			
	i) Methyl chloride is treated with alc. KCN.			
	ii) Chlorobenzene is treated with nitrating mixture.			
	iii) Bromomethane is heated with AgF.			
	b) In the following pairs of compounds, which of the following undergoes SN ² reaction faster & why?			
	i) $\bigcirc -CH_2 - Cl$ and $\bigcirc -Cl$			
	ii) <u>Cl</u> and <u>I</u>			