Class- X Session- 2020-21

Subject- Mathematics - Standard

Sample Question Paper

Time Allowed: 3 Hours

Maximum Marks: 80

General Instructions:

- 1. This question paper contains two parts A and B.
- 2. Both Part A and Part B have internal choices.

Part – A:

- 1. It consists three sections- I and II.
- 2. Section I has 16 questions of 1 mark each. Internal choice is provided in 5 questions.
- 3. Section II has 4 questions on case study. Each case study has 5 case-based sub-parts. An examinee is to attempt any 4 out of 5 sub-parts.

Part – B:

- 1. Question No 21 to 26 are Very short answer Type questions of 2 mark each,
- 2. Question No 27 to 33 are Short Answer Type questions of 3 marks each
- 3. Question No 34 to 36 are Long Answer Type questions of 5 marks each.
- 4. Internal choice is provided in 2 questions of 2 marks, 2 questions of 3 marks and 1 question of 5 marks.

Question	Part-A						
No.		allocated					
	Section-I						
	Section I has 16 questions of 1 mark each. Internal choice is provided in 5 questions.						
1	If xy=180 and HCF(x,y)=3, then find the LCM(x,y).	1					
	OR						
	The decimal representation of $\frac{14587}{2^1 \times 5^4}$ will terminate after how many decimal places?						
2	If the sum of the zeroes of the quadratic polynomial $3x^2$ -kx+6 is 3, then find the value of k.	1					

3.	For what value of k, the pair of linear equations 3x+y=3 and 6x+ky=8 does not have a solution.	1
4.	If 3 chairs and 1 table costs Rs. 1500 and 6 chairs and 1 table costs Rs.2400. Form linear equations to represent this situation.	1
5.	Which term of the A.P. 27, 24, 21,is zero?	1
	OR	
	In an Arithmetic Progression, if $d = -4$, $n = 7$, $a_n = 4$, then find a.	
6.	For what values of k, the equation 9x ² +6kx+4=0 has equal roots?	
7.	Find the roots of the equation $x^2+7x+10=0$	1
	OR	
	For what value(s) of 'a' quadratic equation $30 ax^2 - 6x + 1 = 0$ has no real roots?	
8.	If PQ=28cm, then find the perimeter of \triangle PLM	1
9.	If two tangents are inclined at 60° are drawn to a circle of radius 3cm then find length of each tangent.	1
	OR	
	PQ is a tangent to a circle with centre O at point P. If $\triangle OPQ$ is an isosceles triangle, then find $\angle OQP$.	

	Y B5 B4 B3 B2 B1 B	
	A A1 A2 A3 A4 A5 A6 A7 A8 X	
	A AS AS AS AS AS	
12.	Sin A + Cos B = 1, A = 30° and B is an acute angle, then find the value of B.	1
12. 13.	$Sin A + Cos B = 1, A = 30^{\circ} \text{ and } B \text{ is an acute angle, then find the value of } B.$ If x=2sin ² Θ and y=2cos ² Θ +1, then find x+y	1
13.	If x=2sin²Θ and y=2cos²Θ+1, then find x+y In a circle of diameter 42cm,if an arc subtends an angle of 60° at the centre	1
13. 14.	If x=2sin²Θ and y=2cos²Θ+1, then find x+y In a circle of diameter 42cm,if an arc subtends an angle of 60° at the centre where ∏=22/7, then what will be the length of arc. 12 solid spheres of the same radii are made by melting a solid metallic cylinder of base diameter 2cm and height 16cm. Find the diameter of the	1

	Find the probability of getting a black queen when a card is drawn at random from a well-shuffled pack of 52 cards.	
	Section-II Case study based questions are compulsory. Attempt any four sub parts of each question. Each subpart carries 1 mark	
17.	Case Study based-1 SUN ROOM	
	 The diagrams show the plans for a sun room. It will be built onto the wall of a house. The four walls of the sunroom are square clear glass panels. The roof is made using Four clear glass panels, trapezium in shape, all the same size One tinted glass panel, half a regular octagon in shape 	
	i = 1	
(a)	Refer to Top View Find the mid-point of the segment joining the points J (6, 17) and I (9, 16). (i) (33/2,15/2) (ii) (3/2,1/2) (iii) (15/2,33/2) (iv) (1/2,3/2)	1

(b)	Refer to Top View	1
()	The distance of the point P from the y-axis is	
	(i) 4	
	(ii) 15	
	(iii) 19	
	(iii) 25	
(c)	Refer to Front View	1
	The distance between the points A and S is	
	(i) 4	
	(ii) 8	
	(iii)16	
	(iv)20	
(d)	Refer to Front View	1
(4)	Find the co-ordinates of the point which divides the line segment joining the	
	points A and B in the ratio 1:3 internally.	
	(i) (8.5,2.0)	
	(i) (0.0,2.0) (ii) (2.0,9.5)	
	(ii) (2.0,3.5) (iii) (3.0,7.5)	
	(iv) (2.0,8.5)	
(e)	Refer to Front View	1
	If a point (x,y) is equidistant from the Q(9,8) and S(17,8), then	
	(i) x+y=13	
	(ii) x-13=0	
	(iii) y-13=0	
	(iv)x-y=13	
18.	Case Study Based- 2	
	SCALE FACTOR AND SIMILARITY	
	SCALE FACTOR	
	A scale drawing of an object is the same shape as the object but a different	
	size.	
	The scale of a drawing is a comparison of the length used on a drawing to	
	the length it represents. The scale is written as a ratio.	
	SIMILAR FIGURES	
	The ratio of two corresponding sides in similar figures is called the scale	
	factor.	
	Scale factor = $\frac{length in image}{corresponding length in object}$	
	If one shape can become another using Resizing then the	
	shapes are Similar	

(b)	What will effect the similarity of any two polygons? (i) They are flipped horizontally (ii)They are dilated by a scale factor (iii)They are translated down (iv)They are not the mirror image of one another	1
(c)	If two similar triangles have a scale factor of a: b. Which statement regarding the two triangles is true? (i)The ratio of their perimeters is 3a : b (ii)Their altitudes have a ratio a:b (iii)Their medians have a ratio $\frac{a}{2}$: b (iv)Their angle bisectors have a ratio a^2 : b ²	1
(d)	(i)3m (ii)3.5m (ii)4.5m (iv)5m	1
(e)	Below you see a student's mathematical model of a farmhouse roof with measurements. The attic floor, ABCD in the model, is a square. The beams that support the roof are the edges of a rectangular prism, EFGHKLMN. E is the middle of AT, F is the middle of BT, G is the middle of CT, and H is the middle of DT. All the edges of the pyramid in the model have length of 12 m.	1

(c)	Graph of a qua (i) straight line (ii) circle (iii)parabola (iv)ellipse	dratic po	lynomial is	s a				
(d)	The representative the zeroes is 0, (i) $x^2 - 6x + 2$ (ii) $x^2 - 36$ (iii) $x^2 - 6$ (iv) $x^2 - 3$		ighway Ur	nderpass w	vhose one :	zero is 6 and	d sum of	
(e)	The number of (i)1 (ii) 2 (iii) 0 (iv) 3	zeroes tł	nat polyno	mial f(x) =	$(x-2)^2 + 4$	4 can have is	S:	
20.	Case Study B				find the	ACE atch was us time that it f students to	took a	
	Time (in sec)	0-20	20-40	40-60	60-80	80-100		
	No. of students	8	10	13	6	3		

(a)	Estimate the mean time taken by a student to finish the race.	
	(i)54	
	(ii)63	
	(iii)43	
	(iv)50	
(b)	What will be the upper limit of the modal class ?	
	(i)20	
	(ii)40	
	(iii)60	
()	(iv)80	
(c)	The construction of cummulative frequency table is useful in determining the	
	(i)Mean	
	(ii)Median	
	(iii)Mode	
	(iv)All of the above	
(d)	The sum of lower limits of median class and modal class is	
	(i)60	
	(ii)100	
	(iii)80	
	(iv)140	
(e)	How many students finished the race within 1 minute?	
	(i)18	
	(ii)37	
	(iii)31	
	(iv)8	
	Part –B	
	All questions are compulsory. In case of internal choices, attempt any	
	one.	
21.	3 bells ring at an interval of 4,7 and 14 minutes. All three bell rang at 6 am,	2
	when the three balls will the ring together next?	
22.	Find the point on x-axis which is equidistant from the points (2,-2) and (-4,2)	2
	OR	

P (-2, 5) and Q (3, 2) are two points. Find the co-ordinates of the point R on PQ such that $PR=2QR$	
Find a quadratic polynomial whose zeroes are $5-3\sqrt{2}$ and $5+3\sqrt{2}$.	2
Draw a line segment AB of length 9cm. With A and B as centres, draw circles of radius 5cm and 3cm respectively. Construct tangents to each circle from the centre of the other circle.	2
If tanA=3/4, find the value of 1/sinA+1/cosA	2
OR	
If $\sqrt{3} \sin\Theta$ -cos Θ =0 and 0°< Θ <90°, find the value of Θ	
In the figure, quadrilateral ABCD is circumscribing a circle with centre O and AD \perp AB. If radius of incircle is 10cm, then the value of x is	2
$ \begin{array}{c} $	
Prove that 2- $\sqrt{3}$ is irrational, given that $\sqrt{3}$ is irrational.	3
If one root of the quadratic equation $3x^2+px+4=0$ is 2/3, then find the value of p and the other root of the equation.	3
OR	
The roots α and β of the quadratic equation x ² -5x+3(k-1)=0 are such that α - β =1. Find the value k.	
	PQ such that PR=2QR Find a quadratic polynomial whose zeroes are 5-3√2 and 5+3√2. Draw a line segment AB of length 9cm. With A and B as centres, draw circles of radius 5cm and 3cm respectively. Construct tangents to each circle from the centre of the other circle. If tanA=3/4, find the value of 1/sinA+1/cosA OR If √3 sinΘ-cosΘ=0 and 0°<Θ <90°, find the value of Θ

In the figure, ABCD is a square of side 14 cm. Semi-circles are drawn with each side of square as diameter. Find the area of the shaded region.							3		
			A		B				
one side of t	the firs	t triangl		-					3
				OR					
				a point	on side l	BC such	that BD	= 1/3	
The median of the following data is 16. Find the missing frequencies a and b, if the total of the frequencies is 70.								3	
Class	0-5	5-10	10-15	15-20	20-25	25-30	30-35	35-40	
Frequency	12	а	12	15	b	6	6	4	
									3
cm and 'b' c	m (a>l	o) from i	its base a	and in th	e same :				
	each side of The perimet one side of to of the second In an equilat BC. Prove th The median if the total of Class Frequency If the angles cm and 'b' c	each side of squar The perimeters of one side of the firs of the second trian In an equilateral tri BC. Prove that 9 A The median of the if the total of the fre Class 0-5 Frequency 12 Class 0-5 Frequency 12 If the angles of ele cm and 'b' cm (a>H	each side of square as dia The perimeters of two sim one side of the first triangle of the second triangle. In an equilateral triangle A BC. Prove that $9 \text{ AD}^2 = 7 \text{ A}$ The median of the followir if the total of the frequenci Class 0-5 5-10 Frequency 12 a If the angles of elevation of cm and 'b' cm (a>b) from	each side of square as diameter. F and a second triangle is 9 cm of the second triangle ABC, D is BC. Prove that 9 AD ² = 7 AB ² The median of the following data is if the total of the frequencies is 70. Class 0-5 5-10 10-15 Frequency 12 a 12 If the angles of elevation of the top cm and 'b' cm (a>b) from its base	each side of square as diameter. Find the a A A A A A A A A A A A A A	each side of square as diameter. Find the area of the second triangle is 9cm, find the length of the second triangle. The perimeters of two similar triangles are 25cm arrone side of the first triangle is 9cm, find the length of the second triangle. OR In an equilateral triangle ABC, D is a point on side I BC. Prove that $9 \text{ AD}^2 = 7 \text{ AB}^2$ The median of the following data is 16. Find the missif the total of the frequencies is 70. $\frac{Class}{Frequency} \frac{0.5}{12} \frac{5 \cdot 10}{10 \cdot 15} \frac{15 \cdot 20}{12} \frac{20 \cdot 25}{5}$ Frequency 12 a 12 15 b If the angles of elevation of the top of the candle for	each side of square as diameter. Find the area of the shade A = B = B = D = D = D = D = D = D = D = D	each side of square as diameter. Find the area of the shaded region A = B $B = B$ $B = B$ $B = B$ $B = B$ The perimeters of two similar triangles are 25cm and 15cm respectives one side of the first triangle is 9cm, find the length of the correspond of the second triangle. OR In an equilateral triangle ABC, D is a point on side BC such that BD BC. Prove that 9 AD ² = 7 AB ² The median of the following data is 16. Find the missing frequencies if the total of the frequencies is 70. $\frac{Class}{12} = \frac{0-5}{5-10} = \frac{5-10}{10-15} = \frac{15-20}{20-25} = \frac{25-30}{25-30} = \frac{30-35}{6}$ Frequency 12 a 12 15 b 6 6	each side of square as diameter. Find the area of the shaded region. A = B = B = B = B = B = B = B = B = B =

			Se	ection V					
33.	The mode of the following data is 67. Find the missing frequency x.								
	Class	40-50	50-60	60-70	70-80	80-90			
	Frequency	5	Х	15	12	7			
34.	The two palm other on eithe between them are 60° and 30 distances of th	r side of the on the rive D°, respect	e river, whi er the ang ively. Find	ich is 80 les of ele the heigl	m wide. I vation of	From a po the top of	int O the trees	5	
	OR								
	The angles of depression of the top and bottom of a building 50 meters high as observed from the top of a tower are 30° and 60° respectively. Find the height of the tower, and also the horizontal distance between the building and the tower.								
35.	Water is flowir cylindrical tan much will the	k of base ra	adius 40 cr	m at the i	rate of 0.			5	
36.	A motorboat c in 6 hours. In t 36km downstr stream.	the same ti	me it cove	rs a dista	ance of 1	2 km upsti	ream and	5	