Exam ID.			

Candidates must write the Set No. on the title page of the OMR Sheet.

DAV PUBLIC SCHOOLS, ODISHA ZONE –I PA-II EXAMINATION, 2021-22

- Check that this question paper contains 08 printed pages.
- Set number given on the right-hand side of the question paper should be written on the OMR SHEET by the candidate.
- Check that this question paper contains 50 questions.

CLASS – IX

SUB : MATHEMATICS (041)

Time :90 Minutes

Maximum Marks:40

General Instruction:

- 1. The question paper contains three parts A, B and C.
- 2. Section A consists of 20 questions of 1 mark each. Any 16 questions are to be attempted.
- 3. Section B consists of 20 questions of 1 mark each. Any 16 questions are to be attempted.
- 4. Section C consists of 10 questions based on two Case Studies. Attempt any 8 questions.
- 5. There is no negative marking.

SECTION – A

Section – A consists of 20 questions. Attempt any 16 questions from this section. The first attempted 16 questions would be evaluated.

Q1. The value of 2.999.... in the form of $\frac{p}{q}$, where p and q are integers and $q \neq 0$.

(A)
$$\frac{2999}{100}$$
 (B) $\frac{19}{10}$ (C) 3 (D) $\frac{20}{99}$

Q2. The value of $\frac{\sqrt{32} + \sqrt{48}}{\sqrt{8} + \sqrt{12}}$ is equal to (A) $\sqrt{2}$ (B) 2 (C) 4 (D) 8

Q3. Any solution of the linear equation 2x + 0y + 9 = 0 in two variables is of the form.

(A)
$$\left(\frac{-9}{2}, m\right)$$
 (B) $\left(n, \frac{-9}{2}\right)$ (C) $\left(0, \frac{-9}{2}\right)$ (D) (-9, 0)

Q4. The graph of the linear equation 2x + 3y = 6 is a line which meets the x- axis at the points

(A) (0, 2) (B) (2, 0) (C) (0, 3) (D) (3, 0)

Q5. The point which lies on the line $y = \frac{-3}{2}x + 5$ is (A) (4, 1) (B) (-2, 2) (C) (6, -4) (D) (-4, 11)

Q6. If y coordinate of a point is zero, then this point will always lie
(A) In 2nd Quadrant
(B) In 1st Quadrant (C) On y-axis
(D) On x -axis

Q7. An exterior angle of a triangle is 105⁰ and its two interior opposite angles are equal. Each of those equal angles is

- (A) $37\frac{1^{0}}{2}$ (B) $52\frac{1^{0}}{2}$ (C) $72\frac{1^{0}}{2}$ (D) 75^{0}
- Q8. The sum of the exterior angles of the triangle is-(A) 90^{0} (B) 180^{0} (C) 270^{0} (D) 360^{0}
- Q9. In the given figure, POQ is a straight line. Then the value of x is

$(A) 20^{\circ} (D) 23^{\circ} (C) 30^{\circ} (D) 30^{\circ}$	(A) 20°	(B) 25°	(C) 30°	(D) 3:
---	------------------	------------------	------------------	--------

Q10. The Angles of a triangle are in the ratio 2: 4: 3. The smallest angle of the triangle is

- (A) 60^0 (B) 40^0 (C) 10^0 (D) 20^0
- **Q11.** If the difference between two supplementary angles is 40°, then the angles are (A) 60°, 125° (B) 210°, 150° (C) 70°, 110° (D) None of these
- Q12. The length of the hypotenuse of an isosceles right triangle with area 72 cm² is (A) 12 cm (B) $12\sqrt{2}$ cm (C) 24 cm (D) 12.5 cm
- Q13. The edges of a triangular board are 12 cm, 17 cm and 25 cm. The cost of painting one of its surfaces at the rate of 50 paise per cm² is
 (A) Rs 22.50 (B) Rs. 45 (C) Rs. 55 (D) Rs. 90
- Q14. Let 'm' be the mid value and 'l' be the upper-class limit of a class in a continuous frequency distribution. The lower-class limit of the class is
 (A) 2m+1
 (B) 2m−1
 (C) m−1
 (D) m−21
- Q15.In the class interval 14.5 19.5, 19.5 24.5, the number 19.5 is included in (A) 14.5-19.5 (B) 19.5 – 24.5 (C) both the intervals (D) None of these

Q16.The width of each five continuous classes in a frequency distribution is 5 and the lower-class limit of the lowest class is 10. The upper-class limit of the highest class is

(A) 15 (B) 25 (C) 35 (D) 40

Q17. On simplifying $(\sqrt{3} - \sqrt{7})^2$, we get (A) 2 - $\sqrt{21}$ (B) 5 - $\sqrt{21}$ (C) 2(5 - $\sqrt{21}$) (D) 10 - $\sqrt{21}$

Q18.Type of equation that represents a line passing through the origin is(A) x=m-y(B) y=mx(C) y=m+x(D) None of these

Q19. For one of the solutions of the equation ax + by + c = 0, x is negative and y is positive, then surely a portion of the line lies in

- (A) First Quadrant (B) Second Quadrant
- (C) Third Quadrant (D) Fourth Quadrant

Q20. An angle is 20⁰ more than three times its supplementary angle, then the angles are-

 $(A)\frac{70^{\circ}}{4}, \frac{290^{\circ}}{4}$ (B) 140⁰, 40⁰ (C) 60⁰, 120⁰ (D) 40⁰, 50⁰

SECTION-B

Section – B consists of 20 questions. Attempt any 16 questions from this section. The first attempted 16 questions would be evaluated.

Q21. The product of $(2\sqrt{2} + 5\sqrt{3})$ and $(2\sqrt{4})$ a natural number	$\overline{2} - 5\sqrt{3}$) is a (B) an irrational number				
(C) a rational number	(D) both a and c.				
Q22. If $a = \frac{3+\sqrt{5}}{2}$, find the value of $a^2 + \frac{1}{a^2}$ (A) 4 (B) 7	(C) 11 (D) 15				
Q23. The linear equation $5x = 2y$ has(A) a unique solution(B) no solution(C) two solutions(D) infinitely many solutions					
Q24. The equation of x- axis is of the form (A) $x = 0$ (B) $y = 0$ (C) $x + y = 0$ (D) $x = y$					
Q25. In a $\triangle ABC$, if $\angle A + \angle B = 110^{\circ}$, $\angle C + (A) 75^{\circ} (B) 60^{\circ}$	$\angle A = 135^{\circ}$, then the value of $\angle A$ is (C) 65° (D) 55°				
Q26. If the sides of a triangle are doubled, then its area(A) remains same(B) is doubled(C) becomes tripled(D) becomes four times					
Q27. The class marks of a frequency distribution are 10, 12, 14, 16 The class corresponding to the class mark 14 is (A) 11-13 (B) 13 - 15 (C) 14-16 (D) 12-14					
Q28.In a histogram, the areas of rectangular columns of different classes are proportional to the- (A) frequencies (B) class size (C) class mark (D) none of these					
Q29. The point at which the two co-ordinate axes meet is called the(A) abscissa(B) ordinate(C) origin(D) Quadrant					
Q30. If one of the angles of a triangle is 130°, then the angle between the bisectors of(A) 50^0 (B) 65^0 (C) 145^0 (D) 155^0					
Q31. Which of the following statements is correct?					
(A) A triangle cannot have an obtuse angle and a right angle(B) A triangle cannot have two obtuse angle					

(B) A triangle cannot have two obtuse angle

PA-II/MATH-IX/SET-1

(C) A triangle can have three acute angles.

(D) All of these

Q32. A linear equation in two variables is of the form ax + by + c = 0, where a, b and c are real numbers and

(A)
$$a \neq 0, b \neq 0$$
(B) $a = 0, b \neq 0$ (C) $a \neq 0, b = 0$ (D) $a = 0, c = 0$

Q33. The point which lies on y – axis at a distance of 5 units in the negative direction of y – axis is

(A) (0, 5) (B) (5, 0) (C) (0, -5) (D) (-5, 0)

Q34. In the given figure if l || m, then the value of x is

Q35. Two sides of a triangle are 5 cm and 13 cm and its perimeter is 30 cm. The area of the triangle is

(A) 30cm^2 (B) 60cm^2 (C) 32.5 cm^2 (D) 65 cm^2

Q36.To draw a histogram the adjusted frequency for the class 25-45 is-

Class Interval	5-10	10-15	15-25	25-45	45-75
Frequency	6	12	10	8	15
(A) 6	(B)	5	(C) 3	(D) 2	

Q37. In two triangles $\triangle ABC$ and $\triangle PQR$, $\angle A = 30^{\circ}, \angle B = 70^{\circ}, \angle P = 70^{\circ}, \angle Q = 80^{\circ}$

and AB = RP, then

(A) $\triangle ABC \cong \triangle PQR$ (B) $\triangle ABC \cong \triangle QRP$ (C) $\triangle ABC \cong \triangle RPQ$ (D) $\triangle ABC \cong \triangle RQP$

Q38. The sides of a triangle are 34cm, 54cm and 61cm respectively. The length of its longest altitude is

```
PA-II/MATH-IX/SET-1
```

Q39.In the figure, $p \parallel q$. The value of x is:

(A) 35⁰ (C) 70° (B) 55° (D) 110° Q40. We want to know and collect the percentage of students who passed during the last 10 years of class 10th board examination; the data thus collected is known as a

(A) Primary data (B) Secondary data (C) Frequency data (D) None of these

SECTION –C

Section – C consists of 10 questions bases on two case study of 1 mark each. Attempt any 8 questions from this section. The first attempted 8 questions would be evaluated.

CASE STUDY-1

Ron and Harry are bench mates in class. In Mathematics class, Ron was finding it difficult to simplify $\frac{1}{\sqrt{5-\sqrt{2}}}$. His bench mate Harry gave him a clue to rationalize the denominator by taking a conjugate of $\sqrt{5} - \sqrt{2}$. Ron simplified the expression and also thanked Harry for the help. Harry also gave him approximate values of $\sqrt{5} = 2.236$ and $\sqrt{2} = 1.414$

to find the approximate value of the expression.

Based on the above information answer the following questions:

Q41.What is the conjugate of $\sqrt{5}-\sqrt{2}$?					
(A) √5	(B) √2	(C) $\sqrt{5} + \sqrt{2}$	$\sqrt{2}$ (D) $\sqrt{5} - \sqrt{2}$		
Q42.To rationalize $\frac{1}{\sqrt{5-\sqrt{2}}}$ the conjugate has to be multiplied to:					
(A) Nume	erator		(B) Denominator		
(C) Both I	Numerator and De	nominator	(D) None of these		

Q43.What is the simplified form of the expression that Ron found out?

(A) $\frac{\sqrt{5}+\sqrt{2}}{3}$ (B) $\frac{\sqrt{5}-\sqrt{2}}{3}$ (C) $\sqrt{5} + \sqrt{2}$ (D) $\sqrt{5} - \sqrt{2}$

Q44.What is the approximate value of the expression did Ron find after putting the values $\sqrt{5} = 2.236$ and $\sqrt{2} = 1.414$?

(A)2.216	(B) 1.216	(C) 3.216	(D) 0.216
----------	-----------	-----------	-----------

Q45.The number $\sqrt{5} - \sqrt{2}$ is a/an:

(A)	Rational Number	(B) Natural Number
(C)	Integer	(D) Irrational Number

CASE STUDY-2

Shyam has an agricultural field. For winter he planned to cultivate different types of crops. So he divided his quadrilateral field ABDCE into five triangular fields. In $\triangle ABD$ he sowed mustard seeds, in $\triangle ADF$ he sowed tomatoes, in $\triangle FDC$ he sowed potatoes, in $\triangle AEF$ he sowed wheat and in $\triangle EFC$ he sowed spinach. The dimensions of the triangles were such that AC=AE, AB=AD and $\angle BAD = \angle EAC$.

Based on the above information answer the following questions:

Q46.In the above figure ∠CAB =?						
(A)∠BAD	(B) ∠EAD	(C)∠EAC	(D) ∠DAC			
Q47. $\triangle CAB \cong \triangle EAD$ by which property of congruency?						
(A) AAS	(B) SSS	(C) RHS	(D) SAS			
Q48. Length of BC =?						
(A) DE	(B) BC	(C) AD	(D) CE			
Q49.Major of ∠ABC =	?					
$(A) \angle ACB$	$(B) \angle AED$	(C) ∠ADE	(D) ∠EAD			
Q50.Major of∠ACB =?						
(A)∠ABC	$(B) \angle AED$	$(C) \angle EAD$	(D) ∠ACB			

*** ALL THE BEST ***