PRACTICE PAPER 6

CLASS X

TIME: 3 Hours

SUBJECT: MATHEMATICS (STANDARD)

MAX MARKS: 80

General Instructions:

1 This Question Paper has 5 Sections A-E.

2 Section A has 20 MCQs carrying 1 mark each.

3. Section B has 5 questions carrying 02 marks each.

4. Section C has 6 questions carrying 03 marks each.

5. Section D has 4 questions carrying 05 marks each.

6. Section E has 3 case based integrated units of assessment (04 marks each) with sub-parts of the values of 1, 1 and 2 marks each respectively.

7. All Questions are compulsory. However, an internal choice in 2 Qs of 2 marks, 2 Qs of 3 marks and 2 Questions of 5 marks has been provided. An internal choice has been provided in the 2 marks Questions of Section E.

8. Draw neat figures wherever required. Take $\pi = 22/7$ wherever required if not stated.

	SECTION A				
	Section A consists of 20 questions of 1 mark each				
Q No.		MARKS			
1	The LCM of two prime numbers p and q $(p > q)$ is 221. Then the value of $3p - q$. 1				
	a) 4 b) 28 c) 38 d) 48				
2	If 2 and $\frac{1}{2}$ are the zeros of $px^2 + 5x + r$, then				
	a) $p = r = 2$ b) $p = r = -2$ c) $p = 2, r = -2$ d) $p = -2, r = 2$				
3	One equation of a pair of dependent linear equations is $-5x + 7y = 2$. The second equation can be				
	a) $10x+14y+4=0$ b) $-10x-14y+4=0$				
	c) $-10x+14y + 4 = 0$ d) $10x - 14y = -4$				
4	If root of the quadratic equation $ax^2 + bx + c = 0$ is three times the other, then				
	a) $b^2 = 16$ ac b) $b^2 = 3ac$ c) $3b^2 = 16$ ac d) $16b^2 = 3ac$				
5	The sum of first n even natural numbers is 1				
	a) $2n$ b) n^2 c) $n^2 + n$ d) $n^2 - 1$				
6	If origin is the centroid of a triangle whose vertices are A(a, b), B(b, c) and	1			
	Page 1 of 8	l			

	1950 - 305 - 514 - 627	the value of $a^3 + b^3$			
	a) 0		c) $3(a + b + c)$	d)3abc	
7	The coordinate	es of the point on y	-axis which is nearest to	the point $(-2, 5)$	1
	a) (-2,0)	b) (0, -2)	c) (5,0)	d) (0,5)	
8	△ABC is such	that AB=3 cm, BC	= 2cm, CA= 2.5 cm. If	$\Delta ABC \sim \Delta DEF$ and	1
		n perimeter of ΔDE			
	a) 7.5 cm	b) 15 cm	c) 22.5 cm	d) 30 cm	
9	If two tangent	s inclined at an ang	le of 60° are drawn to a	circle of radius 3cm, then	1
	the length of e	each tangent is equa	l to		
	a) $\frac{3\sqrt{3}}{2}$ cm	b) 3 cm	c) 6 cm	d) 3√3 cm	
		a	TT TT		
		\bigwedge	\wedge		
	If PQ = 28 cm	, then the perimeter	of Δ PLM is		
	If PQ = 28 cm a) 14 cm	, then the perimeter b) 28 cm	of Δ PLM is c) 56 cm	d) 84 cm	
11	a) 14 cm		c) 56 cm	d) 84 cm	1
11	a) 14 cm	b) 28 cm 3 sinα cosα, then va	c) 56 cm	d) 84 cm d) -1,-1	1
11	a) 14 cm If $1 + \sin 2\alpha = 3$ a) -1, 1	b) 28 cm 3 sinα cosα, then va	c) 56 cm lues of cot α are c)1, 2		1
	a) 14 cm If $1 + \sin 2\alpha = 3$ a) -1, 1	b) 28 cm 3 sinα cosα, then va b) 0,1	c) 56 cm lues of cot α are c)1, 2		-
	a) 14 cm If 1+ sin2 α = 3 a) -1, 1 If tan α + cot α a) 0	b) 28 cm 3 sin α cos α , then va b) 0,1 $\alpha = 2$, then tan ²⁰ α + b) 2	c) 56 cm lues of cot α are c)1, 2 $\cot^{20}\alpha =$	d) -1,-1 (d) 2 ²⁰	
12	a) 14 cm If 1+ sin2 α = 3 a) -1, 1 If tan α + cot α a) 0	b) 28 cm 3 sin α cos α , then va b) 0,1 $\alpha = 2$, then tan ²⁰ α + b) 2	c) 56 cm lues of cot α are c)1, 2 $\cot^{20}\alpha =$ c) 20	d) -1,-1 (d) 2 ²⁰	1

14	The number of revolutions made by a circular wheel of radius 0.7m in rolling a	1			
	distance of 176m is				
	(a) 22 b) 24 c) 75 d) 40				
15	If the circumference of a circle is doubled, then it's area is	1			
	a) halved b) doubled c) tripled d) quadrupled				
16	Two fair dice are rolled simultaneously. The probability that 5 will come up at	1			
	least once is				
	a) $\frac{5}{36}$ b) $\frac{11}{36}$ c) $\frac{12}{36}$ d) $\frac{23}{36}$				
17	A card is drawn from a well shuffled deck of cards. What is the probability that the	1			
	card drawn is neither a king nor a queen?				
	a) $\frac{11}{13}$ b) $\frac{12}{13}$ c) $\frac{11}{26}$ d) $\frac{11}{52}$				
	a) 13 b) 13 b) 26 a) 52				
10		1			
18	If the difference of Mode and Median of a data is 24, then the difference of median	1			
	and mean is a) 8 b) 12 c) 24 d) 36				
19		1			
19	Assertion: If surface areas of two spheres are in the ratio 16 : 9, then their volumes are in the ratio 64 : 27	1			
	Reason: If S_1 and S_2 are surface areas of two spheres and V_1 and V_2 are their				
	volumes, then $\frac{V_1}{V_2} = \left(\frac{S_1}{S_2}\right)^{\frac{3}{2}}$				
	a) Both assertion (A) and reason (R) are true and reason (R) is the correct explanation of assertion (A).				
	b) Both assertion (A) and reason (R) are true but reason (R) is not the correct explanation of assertion (A).				
	c) Assertion (A) is true but reason (R) is false.				
	d) Assertion (A) is false but reason (R) is true.				
20	Assertion: In an arithmetic progression with $a = 15$, $d = -3$ then 6th term	1			
	will be zero. Reason: $a - d$, a , $a + d$ are three numbers in arithmetic progression.				
	a) Both assertion (A) and reason (R) are true and reason (R) is the correct explanation of assertion (A).				
	b) Both assertion (A) and reason (R) are true but reason (R) is not the correct				
	explanation of assertion (A).c) Assertion (A) is true but reason (R) is false.				
	d) Assertion (A) is false but reason (R) is true.				
-	SECTION B Section B consists of 5 questions of 2 marks each				
21	If sum of two numbers is 1215 and their HCF is 81. What is the possible number of	2			
- 21	pairs of such numbers. Also find them.	4			
	Page 3 of 8				

22	In the figure, if $\angle ACB = \angle CDA$, $AC = 6$ cm and $AD = 3$ cm,	2
	then find the length of AB	-
23	The radii of two concentric circles are 13 cm and 8 cm. AB is a diameter of the	2
	bigger circle and BD is tangent to the smaller circle touching it at D and	
	intersecting the larger circle at P, on producing. Find the length of AP.	
24	If $\sin \theta + \cos \theta = \sqrt{3}$, then prove that $\tan \theta + \cot \theta = 1$	2
	OR	
_	If sec θ + tan θ = p, find cot θ	~
25	The measure of the minor arc of a circle is $\frac{1}{5}$ of the measure of the corresponding	2
	major arc.If the radius of the circle is 10.5 cm, find the area of the sector	
	corresponding to major arc.	
	OR	
	The diameters of the front and rear wheels of a tractor are 80 cm and 2 m	
	respectively. Find the number of revolutions that rear wheel will make to cover the	
	distance which the front wheel covers in 1400 revolutions.	
	SECTION C	
26	Section C consists of 6 questions of 3 marks each	2
26	Four bells commence tolling together. They toll at intervals of 2, $2\frac{1}{4}$, $4\frac{1}{2}$ and $2\frac{3}{4}$ seconds respectively. After what time will they toll together again?	3
27	If the zeroes of the polynomial $px^2 + qx + r$ are real and are of the form $\frac{\alpha}{\alpha+1}$ and	3
	$\frac{\alpha+1}{\alpha}$, then show that $(p+q+r)^2 = 4p^2 + q^2 + 4pq$	
28	The expenses of a lunch are partly constant and partly proportional to the number	3
	of guests. The expenses amount to Rs.65 for 7 guests and Rs.97 for 11 guests. How	
	much the expenses for 18 guests will amount to?	
	OR	
	Solve for x and y:	
	$\frac{ax}{b} - \frac{by}{a} = a + b$	
	ax - by = 2ab	
	Page 4 of 8	

	T								3	5
33	$\triangle ABC \sim \triangle AXY \text{ and } \frac{AB}{AX} = \frac{5}{3}$. If XY = 4 cm and BY bisects $\angle XYC$, find AY				5					
	A X B B									
34	The height of	a cone is	30 cm. A	small con	e is cut off	f at the to	p by a p	plane par	allel	5
	to the base. If	f its volur	ne be $\frac{1}{27}$ o	f the volur	ne of the g	given con	e, at wh	at height	:	
	above the bas	se is the s	ection mad	de?						
				OR	E.					
	The dimensio	ons of a re	oom are 8r	n x 6m x h	. It has tw	o doors e	each of s	size 2m x	1m	
	and one almin	rah of size	e 3m x 2m	The cost of	of covering	g the wal	ls by wa	all paper		
	which is 40 c	m wide a	t the rate of	of Rs.1.25	per m is R	s. 362.50). Find t	he height	t of	
	the room.									
	Daily wages	of 110 wo	orkers, obt	ained in a	survey, are	e tabulate	ed belov	v:		5
35	Daily Wages (in Rs.)	100- 120	120- 140	140- 160	160- 180	180- 200	200- 220	220- 240		
	Number of Workers	10	15	20	22	18	12	13		
	Compute the mean daily wages and modal daily wages of these workers.									
		~		SECTIO						
26	Case study based questions are compulsory									
36	<u>Case study – 1</u> Undia is a compatitive manufacturing location due to the low cost of manpower and str					trong				
	India is a competitive manufacturing location due to the low cost of manpower and strong Page 6 of 8					urong				

	technical and engineering capabilities. The production of TV set in a factory increases							
	uniformly by a fixed number every year. It produced 16000 sets in 6th year and							
	22600 in 9th year.							
	Based on the above information, answer the following questions:							
	i) Find the production during first year.	1						
	ii) In which year the production is 29200?	2						
	OR							
	Find the difference of the production during 7th year and 4th year.							
	iii) Find the production during 8th year	1						
37	<u>Case study – 2</u>							
	For sports day celebration, the school decided to make activity betw	ween the students						
	in such a way that Vicky, Gaurav and Shalini are standing at positions A,B a	and respectively.						
	10 - B							
	9 · · · ·							
	8 -							
	7 -							
	6 -							
	5 -							
	4 - A C							
	3.							
	2 -							
	1.							
	0 1 2 3 4 5 6 7 8 9 10 11 12 13 14							
	Based on the above information, answer the following questions:							
	i) Write the coordinates of the midpoint of the line joining Vicky and							
	ii) If all the three students are joined by straight lines, find the area cov	vered by 2						
	the closed figure so obtained.	the closed figure so obtained.						
	OR							
	Find the point on X-axis equidistant from the points A and C.	Find the point on X-axis equidistant from the points A and C.						
	iii) Find the distance between Gaurav and Shalini.	1						
38	Case study – 3							
	A girl 1.5 m tall spots a parrot sitting on the top of a building of height 58 m from the ground.							
	The angle of elevation of the parrot from the eyes of girl at any instant is 60°. The parrot flies							
	away horizontally in such a way that it remained at a constant height from the ground. After 8s							
	Page 7 of 8							

Page 8 of 8

