PRACTICE PAPER 5

CLASS X

SUBJECT: MATHEMATICS (BASIC) MAX M

MAX MARKS: 80

TIME: 3 Hours

General Instructions:

1 This Question Paper has 5 Sections A-E.

2 Section A has 20 MCQs carrying 1 mark each.

3. Section B has 5 questions carrying 02 marks each.

4. Section C has 6 questions carrying 03 marks each.

5. Section D has 4 questions carrying 05 marks each.

6. Section E has 3 case based integrated units of assessment (04 marks each) with sub-parts of the values of 1, 1 and 2 marks each respectively.

- 7. All Questions are compulsory. However, an internal choice in 2 Qs of 2 marks, 2 Qs of 3 marks and 2 Questions of 5 marks has been provided. An internal choice has been provided in the 2 marks Questions of Section E.
- 8. Draw neat figures wherever required. Take $\pi = 22/7$ wherever required if not stated.

	S	ECTION A		
	Section A consists of	of 20 questions of 1 m	ark each	MADES
$(7 \times 11 \times 12 \times 15) \pm$	15 is a			MARKS
(/×11×13×13)+	15 18 a			1
			1	
The ratio of LCM	and HCF of the le	ast composite and the	least prime number is	1
a)1:2	b) 2:1	c) 1:1	d) 1:3	
The pair of linear	equations 7x - 3y	= 4 and 14x + 4y = 5	have	1
a)one solution	b) two solutions	c) many solutions	d) no solutions	
An integer when	added to its square	equals to 182. Then or	ne of the integers is	1
a)-15	b) -14	c) -13	d) 14	
If $x = 3$ is one root	ot of the quadratic e	equations x^2 -2kx -6 =	0 then the value of k is	1
a)1	b)2	$c)\frac{1}{c}$	$d)\frac{1}{2}$	
w)1	0)2	c) ₂	c) ₃	
If $A\left(\frac{m}{3}, 5\right)$ is the	e mid point of the li	ne segment joining th	e points Q (-6,7) and	1
R $(-2,3)$ then the	value of m is			
a) -12	b) -4	c) 12	d) -6	
S	1000	<u>a</u>	18. 	
	$(7 \times 11 \times 13 \times 15) +$ a) composite num c) prime number The ratio of LCM a)1:2 The pair of linear a)one solution An integer when a a)-15 If x = 3 is one root a)1 If A $\left(\frac{m}{3}, 5\right)$ is the R (-2,3) then the	Section A consists of $(7 \times 11 \times 13 \times 15) + 15$ is aa) composite numberb) whoc) prime numberd) bothThe ratio of LCM and HCF of the lea)1:2b) 2:1The pair of linear equations $7x - 3y$ a)one solutionb) two solutionsAn integer when added to its squarea)-15b) -14If $x = 3$ is one root of the quadratic ea)1b)2If $A(\frac{m}{3}, 5)$ is the mid point of the lineR (-2,3) then the value of m is	$(7 \times 11 \times 13 \times 15) + 15$ is aa) composite numberb) whole numberc) prime numberd) both (a) and (b)The ratio of LCM and HCF of the least composite and thea)1:2b) 2:1c) 1:1The pair of linear equations $7x - 3y = 4$ and $14x + 4y = 5$ a)one solutionb) two solutionsc) many solutionsAn integer when added to its square equals to 182. Then ona)-15b) -14c) -13If $x = 3$ is one root of the quadratic equations x^2 -2kx -6 =a)1b)2c) $\frac{1}{2}$ If $A(\frac{m}{3}, 5)$ is the mid point of the line segment joining thR (-2,3) then the value of m is	Section A consists of 20 questions of 1 mark each $(7 \times 11 \times 13 \times 15) + 15$ is aa) composite numberb) whole numberc) prime numberd) both (a) and (b)The ratio of LCM and HCF of the least composite and the least prime number isa)1:2b) 2:1c) 1:1d) 1:3The pair of linear equations $7x - 3y = 4$ and $14x + 4y = 5$ havea)one solutionb) two solutionsc) many solutionsd) no solutionsAn integer when added to its square equals to 182. Then one of the integers isa)-15b) -14c) -13d) 14If $x = 3$ is one root of the quadratic equations x^2 -2kx -6 = 0 then the value of k isa)1b)2 $c)\frac{1}{2}$ d) $\frac{1}{3}$ If $A(\frac{m}{3}, 5)$ is the mid point of the line segment joining the points Q (-6,7) andR (-2,3) then the value of m is

7	In figure giver	ı below XY H	BC and AX: $XB = 1$:3. The length of XY is	1
			Â		
			x /	Y	
			1	\langle	
		/		\backslash	
		в		$ \underline{}_{c}$	
	a)1 cm	b) 2cm	c) 3cm	d) 1.5cm	
8	$\Delta ABC \sim \Delta DEI$	F. If $AB = 4 cr$	m, BC = 3.5 cm CA	A = 2.5 cm and DF = 7.5 cm then the	1
	perimeter of Δl	DEF is			
	a)10cm	b)14cm	c)30cm	d)25cm	
9	If two tangents	inclined at an	angle of 60° are d	rawn to a circle of radius 3cm then	1
	the length of ea		angle of oo are a	num to a chere of fundus sem them	
	a) $\frac{3\sqrt{3}}{2}$ cm	b) 3cm	c) 6cm	d) $3\sqrt{3}$ cm	
10	$4 \tan^2 A - 4 \sec^2 A$	$e^2 \mathbf{A} =$			1
	a)1	b) -1	c) 4	d) -4	
11	If $\sin\theta - \cos\theta$	$\theta = 0$ then the	the value of $(\sin^{4\theta} + \frac{1}{2})$	$\cos^{4\theta}$) is	1
	a)1	b) $\frac{3}{4}$	c) $\frac{1}{2}$	d) $\frac{1}{4}$	
12	The value of x	if tan (3x -15°	$(-) = \sqrt{3}$ is		1
	a) 20°	b) 15°	c) 25°	d) 30°	
13	If the perimeter	r of a semicirc	ular protractor is 3	6cm then its diameter is	1
		b) 12 cm	c) 14 cm	d) 15 cm	
14		-	of the sector of a c	ircle with radius 28 cm and of	1
	central angle 9		.) 99	1) 11	
	a) 22 cm	b) 44 cm	c) 88 cm	d) 11cm	
15	If two cubes of	edge 4 cm ea	ch are joined end t	o end then the surface area of	1
	resulting cuboi	d is			
	a)80 cm ²	b) 120 cm ²	c) 160 cm ²	d) 320 cm ²	

16	If the mode of a d	lata is 53 and me	an is 33, then its	median is		1
	a) 36.97 b)	38 c)	40	d) 39.67		
17	The median class	of the following	data is			1
	C.I	20 - 25	25 - 30	30 - 35	35 - 40	
	Frequency	5	8	3	2	
	a) 20-25 b))30-35 c)2	25-30 d):	35-40		
18	The probability th	nat a leap year se	lected at random	will contains 53	Sundays is	1
	a) $\frac{1}{7}$ b	$(1)\frac{2}{7}$	c) 0	d) $\frac{5}{7}$		
19	 Reason: HCF is a) Both assertion explanation of b) Both assertion explanation of 	LCM is 340. always a factor of (A) and reason (A) assertion (A). (A) and reason (A) assertion (A).	of LCM. R) are true and r R) are true but re	eason (R) is the o	correct	1
20	c) Assertion (A) i d) Assertion (A) i Assertion: The ra	s false but reason	n (R) is true.	des the line segm	ent joining the	1
		s (-5,4) and (-2,3) nt of a line segm (A) and reason (A) (A) and reason (A) (A) and reason (A) s true but reason) is 1 : 2. ent divides line r R) are true and r R) are true but r (R) is false. n (R) is true.	in the ratio 1:1. eason (R) is the o	correct	_
			SECTION B			
				of 2 marks each		
21	For what value of has no solution.	k, the system of	equations kx +	3y = 1 and $12x + 3y = 1$	ky = 2	2
22	A quadrilateral A AB + CD = AD +		R R P	circle. Prove that $ \begin{array}{c} \mathbf{C} \\ \mathbf{C} \\ \mathbf{Q} \\ \mathbf{B} \end{array} $		2

Page 3 of 8

	OR	
	Two concentric circles of radii 5 cm and 3cm. Find the length of the chord of the	
	larger circle which touches the smaller circle.	
23	D is a point on the side BC of a triangle ABC such that \angle ADC = \angle BAC, show	2
	that $CA^2 = CB.CD$	
	OR	
	A vertical pole of length 6 cm casts a shadow 4 m long on the ground and at the	
	same time a tower casts a shadow 28 cm long. Find the height of the tower.	
24	If $\tan (2A + B) = \sqrt{3}$, $\cot (3A - B) = \sqrt{3}$ find A and B	2
25	Find the area of a quadrant of a circle whose circumference is 22 cm.	2
	SECTION C	
	Section C consists of 6 questions of 3 marks each	
26	Show that 5 -2 $\sqrt{7}$ is an irrational number where $\sqrt{7}$ is given to be irrational.	3
	OR	
	Two numbers are in the ratio 21 : 17. If their HCF is 5, find the numbers.	
27	The ratio of incomes of two persons is 9:7 and the ratio of their expenditure is 4:3.	3
	If each of them manages to save Rs 2000 per month, find their monthly incomes.	
28	Prove that the lengths of tangents drawn from an external point to a circle	3
	are equal.	
29	Prove that $\frac{Sin\theta - 2Sin^3\theta}{2Cos^3\theta - cos\theta} = tan\theta$	3
30	Find the zeroes of polynomial $4\sqrt{3} x^2 + 5x - 2\sqrt{3}$ and verify the relationship between	3
	zeroes of a polynomial and coefficients.	
31	A box contains 90 discs which are numbered from 1 to 90. If one disc is drawn at	3
	random from the box, find the probability that it bears	
	i) A two-digit numbers	
	ii) A perfect square number	
	iii) A number divisible by 5.	
	SECTION D	
	Section D consists of 4 questions of 5 marks each	
32	An aeroplane left 30 minutes later than its scheduled time and in order to reach its	5
	destination 1500 km away in time, it had to increase its speed by 250 km/hr. from	
	its usual speed. Find its usual speed.	
	OR	

			3		
	Two water taps to	gether can fill the tan	Ik in $9\frac{3}{8}$ hours the	larger tap takes 10 hours	
	less than the smal	ler one to fill the tank	s separately. Find t	he time in which each tap	
	can separately fill				
33				ove that a line drawn	5
	through the mid -	point of one side of a	triangle parallel to	another side bisects the	
	third side.				
34	A tent is in the sh	ape of a cylinder surr	nounted by a conic	cal top. If the height and	5
	diameter of the cy	lindrical part are 2.1	m and 4 m respect	tively, and slant height of	
	the top is 2.8 m,fi	nd the area of the car	was used for making	ng the tent. Also find the	
	cost of the canvas	of the tent at the rate	e of Rs 500 per m ² .		
			OR		
	A pen stand made	e of wood is in the sha	ape of a cuboid wit	th four conical depressions	
	to hold pens. The dimensions are 15 cm by 10 cm by 3.5 cm. The radius of each				
	to hold pens. The	dimensions are 15 cm	n by 10 cm by 3.5 c	cm. The radius of each	
				cm. The radius of each lume of wood in the entire	
35	depression is 0.5 of stand.		.4 cm. Find the vol		5
35	depression is 0.5 of stand.	cm and the depth is 1	.4 cm. Find the vol		5
35	depression is 0.5 of stand.	cm and the depth is 1 e following data is 32	.4 cm. Find the vol		5
35	depression is 0.5 of stand.	cm and the depth is 1 e following data is 32 Class Interval	.4 cm. Find the vol		5
35	depression is 0.5 of stand.	cm and the depth is 1 e following data is 32 Class Interval 0-10	.4 cm. Find the vol .5 Frequency x		5
35	depression is 0.5 of stand.	cm and the depth is 1 e following data is 32 Class Interval 0 - 10 10 - 20	.4 cm. Find the vol .5 Frequency X 5		5
35	depression is 0.5 of stand.	cm and the depth is 1 e following data is 32 Class Interval 0 - 10 10 - 20 20 - 30	.4 cm. Find the vol .5 Frequency X 5 9		5
35	depression is 0.5 of stand.	cm and the depth is 1 e following data is 32 $\begin{array}{c} \hline \textbf{Class Interval} \\ \hline 0 - 10 \\ \hline 10 - 20 \\ \hline 20 - 30 \\ \hline 30 - 40 \end{array}$.4 cm. Find the vol .5 Frequency x 5 9 12		5
35	depression is 0.5 of stand.	cm and the depth is 1 e following data is 32 $\begin{array}{c} \hline \textbf{Class Interval} \\ \hline 0 - 10 \\ \hline 10 - 20 \\ \hline 20 - 30 \\ \hline 30 - 40 \\ \hline 40 - 50 \\ \hline \end{array}$.4 cm. Find the vol .5 Frequency X 5 9 12 y		5
35	depression is 0.5 of stand.	cm and the depth is 1 e following data is 32 $\hline Class Interval$ 0 - 10 10 - 20 20 - 30 30 - 40 40 - 50 50 - 60	.4 cm. Find the vol .5 Frequency X 5 9 12 y 3		5
35	depression is 0.5 of stand.	cm and the depth is 1 e following data is 32 $\hline Class Interval$ 0 - 10 10 - 20 20 - 30 30 - 40 40 - 50 50 - 60 60 - 70 TOTAL	.4 cm. Find the vol .5 Frequency X 5 9 12 y 3 2		5
35	depression is 0.5 of stand. The median of the	cm and the depth is 1 e following data is 32 Class Interval 0 - 10 10 - 20 20 - 30 30 - 40 40 - 50 50 - 60 60 - 70 TOTAL f x and y.	.4 cm. Find the vol .5 Frequency X 5 9 12 y 3 2		5
35	depression is 0.5 of stand. The median of the	cm and the depth is 1 e following data is 32 Class Interval 0 - 10 10 - 20 20 - 30 30 - 40 40 - 50 50 - 60 60 - 70 TOTAL f x and y.	.4 cm. Find the vol .5 Frequency X 5 9 12 y 3 2 40 CTION E	lume of wood in the entire	5

		Your friend Veer wants to participate in a 200 m race. He ca	an
	current	ly run that distance in 51 seconds and with each day of practice, it takes	
	him 2 s	seconds less. He wants to do in 31 seconds	
	Based	on the above information, answer the following questions:	
	i)	Form an A.P representing the arithmetic progression for the given situation	1
	ii)	What is the minimum number of days required to achieve the goal	1
	iii)	If nth term of an AP is given by $a_n = 2n + 3$, then find the common difference of the AP.	2
		OR	
		Find the value of x, for which $2x$, $x+10$, $3x + 2$ are three consecutive terms of an AP.	
37	Case s	<u>tudy – 2</u>	
	Two sh	nips are there in the sea on either side of a lighthouse in such a way that the ship	s and the
	lightho	buse are in the same straight line. The angles of depression of the two ships as o	bserved
	from th	he top of the lighthouse are 60° and 45°. The height of the lighthouse is 200 m	

	45 6 6		80%
		tion, answer the following questions: the first ship from the base of the lighthouse.	1
	5	between the two ships?	2
		of the first ship from the point of observation?	2
38	<u>Case study – 3</u> Students of DAV Pul for a drill practice. A, B, C a	of the second ship from the point of observation? blic School are standing in rows and columns in their pla nd D are the positions of four students as shown in figure	
	¹⁰ 9		
	8 7 6 8 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6	B C C C D C D C 5 6 7 8 9 10 11 12 13	
	Based on the above informat	ion, answer the following questions:	
	i) Find the mid-point o	f BD.	1

iii	If the point P divides the line segment AC in the ratio 1:2, then find the	2
	coordinate of P.	
	OR	
	Find the position of Jaspal standing in such a way that he is equidistant	
	from each of the four-student A, B, C and D.	

