Roll No.	:
----------	---

Please check this question paper contains 38 questions and 9 printed pages.

D.A.V. INSTITUTIONS, CHHATTISGARH PRACTICE PAPER (7) CLASS: X SUBJECT: MATHEMATICS (STANDARD)

TIME: 3 HOURS

MAX MARKS: 80

General Instructions:

- 1. This Question Paper has 5 sections A E.
- 2. Section A has 20 MCQs carrying 1 mark each.
- 3. Section B has 5 questions carrying 2 marks each.
- 4. Section C has 6 questions carrying 3 marks each.
- 5. Section D has 4 questions carrying 5 marks each.
- 6. Section E has 3 case based integrated units of assessment (04 marks each) with sub-parts of the values of 1, 1 and 2 marks each respectively.
- 7. All questions are compulsory. However, an internal choice of 2 questions of 5 marks, 2 questions of 3 marks and 2 Questions of 2 marks has been provided. An internal choice has been provided in the 2 marks questions of Section E.

8. Draw neat figures wherever required. Take $\pi = \frac{22}{7}$ wherever required if not

stated.

	SECTION A							
		Section A cons	ists of 20 questions of 1 ma	rk each.				
Q.					Marks			
No.								
1	Which of the follo	owing is not irration	nal?		1			
	(a) $(2 - \sqrt{3})^2$	(b) $(\sqrt{2} + \sqrt{3})^2$	(c) (√2 -√3)(√2 + √3)	(d)None of these				
2	The graph of a qua	dratic polynomial is			1			
	(a) straight line	(b) parabola	(c) circle	(d)None of these				

3	If $x = a$, $y = b$ is the solution of the equations $x + y = 5$ and $2x - 3y = 4$, then the values								
	of a and b are re	espectively							
	(a) 6, -1	(b) 2, 3	(c) 1, 4	(d) 19/5, 6/5					
4	The polynomial	equation x (x + 1) -	+ 8 = (x + 2) {x - 2)	is	1				
	(a) linear equati	ion	(b) quadratic equ	ation					
	(c) cubic equation (d) bi-quadratic equation								
5	If the common di	ifference of an A.P.is	3, then a_{20} - a_{15} is		1				
	(a) 6	(b) 3	(c) 15	(d) 20					
6	If ΔABC - ΔDEF ABC.	, AB = 4 cm, DE = 6 d	cm, EF = 9 cm and FI	D = 12 cm, find the perimeter of	1				
	(a) 18 cm	(b) 20 cm	(c) 21 cm	(d) 22 cm					
7	The coordinates of	of a point A. where A	B is diameter of a cir	ccle whose centre is (2,-3) and B is	1				
	(1,4) are								
	(a)(3,-10)	(b)(3,10)	(c)(-3,10)	(d)(4,5)					
8	If the point (x, y)	is equidistant from the	ne points A (5,1) and	B (-1,5), then relation between x	1				
	and y is								
	(a)2x = 3y	(b)3x = 2y	(c)x = y	(d)4x = 5y					
9	If x and y are c	omplementary angl	es, then		1				
	(a) sin x = sin y	(b) tan x = tan y	(c) cos x = cos y	(d) sec x = cosec y					
10	If sin θ + sin ² θ	= 1, then $\cos^2 \theta + c$	$\cos^4 \theta =$		1				
	(a) -1	(b) 0	(c) 1	(d)none of these					
11	A pole 6 m high	casts a shadow $2\sqrt{3}$ n	n long on the ground,	then the Sun's elevation is	1				
	(a) 60°	(b) 45°	(c) 30°	(d)90°					
12	If a chord AB sub	btends an angle of 60°	° at the centre of a cire	cle, then angle between the tangents	1				
	at A and B is:								
	(a) 60°	(b) 120°	(c) 20°	(d) 100°					
13	The sides AB, BO	C and AC of a triangle	e ABC touch a circle	at P, Q and R respectively.If	1				
	PA=4cm,BP=3cn	n and AC=11cm the	length of BC (in cm)	is:-					
	(a) 11 cm	(b) 10 cm	(c) 14 cm	(d) 15 cm					

14	The circumference of a circle is equal to the sum of the circumference of two circles having						
	diameters 34 cr	n and 28 cm. The	adius of the new circl	le is			
	(a) 30 cm	(b) 31 cm	(c) 32 cm	(d) 25cm			
15	The length of the	ne pendulum swing	ging through 60° descr	ibing an arc of 8.8 cm is	1		
	(a) 8.5 cm	(b) 8.4 cm	(c) 17 cm	(d) 25cm			
16	Two cones have	e their heights in th	ne ratios 1:3 and radii	in the ratio 3:1. the ratio of their vol	ume 1		
	is						
	(a) 3:5	(b) 1:4	(c) 3:1	(d) 1:2			
17	The mean of a s	set of numbers is \bar{x}	If each number is div	vided by 3, then the new mean is	1		
	(a) \overline{x}	(b) $\bar{x}+3$	(c) $3\overline{x}$	(d) $\bar{x}/3$			
18	A coin is tossed	3 times. The prob	bability of getting not	more than two heads is	1		
	(a) $\frac{1}{8}$	(b) $\frac{7}{8}$	(c) $\frac{3}{8}$	(d) $\frac{5}{8}$			
19	Assertion (A):1	84 is the 60 th term	of the A.P. 3,7,11		1		
	Reason (R): nth	term of A.P. who	se sum to n terms is S	is given by $a_n = S_n - S_{n-1}$.			
	a) Both Assert	ion (A) and Reason	n (R) are true and Rea	son (R) is the correct explanation of	f		
	Assertion (A	A).					
	b) Both Assert	ion (A) and Reaso	n (R) are true and Rea	son (R) is not the correct explanation	on of		
	Assertion (A	A).					
	c) Assertion (A) is true but Reaso	n (R) is false.				
	d) Assertion (A) is false but Rease	on (R) is true.				
20	Assertion (A): I	Probability of getti	ng a prime number gr	eater than 5 on a single throw of die	is 1		
		1/6.					
	Reason (R): P	robability of gettir	ig a number greater th	an 6 on a single throw of die is zero	G.		
	a) Both Assert	ion (A) and Reaso	n (R) are true and Rea	ason (R) is the correct explanation o	f		
	Assertion (A	A).					
	b) Both Assert	tion (A) and Reaso	on (R) are true and Re	ason (R) is not the correct explanati	on of		
	Assertion (A).					
	c) Assertion (A	A) is true but Reas	on (R) is false.				
	d) Assertion (A	A) is false but Reas	on (R) is true.				
			SECTION B				

	Section B consists of 5 questions of 2 marks each.	
21	There are 312, 260 and 156 students in class X, XI and XII respectively. Buses are to be hired	2
	to take these students to a picnic. Find the maximum number of students who can sit in a bus if	
	each bus takes an equal number of students.	
22	In the given figure DE AC and DF AE Prove that $\frac{BF}{FE} = \frac{BE}{EC}$	2
	The diagonals of a quadrilateral ABCD intersect each other at the point O such that $\frac{AO}{CO} = \frac{BO}{DO}$	
	Show that ABCD is a trapezium.	
	Show that ABCD is a trapezium.	
23	If two tangents inclined at an angle of 60° are drawn to a circle of radius 5 cm ,then find the	2
	length of each tangent.	
	OR	
	The length of a tangent drawn from a point P at distance 13 cm from the centre of the circle is	
	12 cm. Find the radius of the circle.	
24	If $\cos \alpha = \frac{1}{2}$ and $\cos \beta = \frac{1}{\sqrt{3}}$, then find $\sin (\alpha + \beta)$, where α and β are acute angles.	2
25	A road which is 7 m wide surrounds a circular park whose circumference is 88 m. Find the area	2
	of the road.	
	SECTION C	
	Section C consists of 6 questions of 3 marks each.	
26	Prove that 5- $\sqrt{3}$ is an irrational number. Assume that $\sqrt{3}$ is an irrational number.	3
27	Find the value of k such that the polynomial $x^2 - (k + 6)x + 2(2k - 1)$ has the sum of its	3
	zeroes equal to half of their product.	

28	A natural number	r, when inc	reased by	12, equals	160 times its	reciprocal.	Find the nu	imber.	3	
				OR						
	Rohini had score	ed 10 more	marks in h	ner mathem	natics test out	of 30 mark	s, 9 times t	hese marks		
	would have been the square of her actual marks. How many marks did she get in the test?									
29	Two circles touch	each other	externally	at P, AB i	s a common t	angent to the	ne circles to	ouching	3	
	them at A and B find value of $\angle APB$.									
				OR						
	If a circle touches	the side B	C of a tria	ngle ABC a	at P and exter	nded sides A	AB and AC	at Q and		
	R respectively, pr	ove that	$AQ = \frac{1}{2}(A$	B+BC+CA	A)					
			7	B	C Q	nen Lai S Lai S Lai La				
30	Prove that $(A - s)$	in sin A)	(sec sec A	— cos co	$(s A) = \frac{1}{\tan tantan}$	$\frac{1}{nA + \cot \cot A}$			3	
31	The distribution	below give	s the weig	ghts of 30 s	students of a	class. Find	the mediar	n weight of	3	
1	the students.									
	the students. Weight (in kg)	40-45	45-50	50-55	55-60	60-65	65-70	70-75		
		40-45 2	45-50 3	50-55 8	55-60 6	60-65 6	65-70 3	70-75 2		
	Weight (in kg)	40-45		-						
	Weight (in kg)	40-45 2		-	6					
	Weight (in kg)	2	3	8 SECTIO	6	6	3			
32	Weight (in kg)	2 Sectio	3 n D consis	8 SECTIO	6 DN D estions of 5 n	6 narks each.	3	2	5	
32	Weight (in kg) No.of students	2 Section times the s	3 n D consists sum of age:	8 SECTIONS State of 4 que s of her 2 c	6 DN D estions of 5 n hildren. Afte	6 narks each. r 5 years he	3	2	5	
32	Weight (in kg) No.of students Mother's age is 3	2 Section times the s	3 n D consists sum of age:	8 SECTIONS State of 4 que s of her 2 c	6 DN D estions of 5 n hildren. Afte	6 narks each. r 5 years he	3	2	5	
32	Weight (in kg) No.of students Mother's age is 3	2 Section times the s f the two c	3 n D consis sum of age: hildren. Fin	8 SECTIONS State of 4 quotes s of her 2 c and the age of OR	6 DN D estions of 5 n hildren. After of the mother	6 narks each. r 5 years he	3 r age will b	2 be twice	5	

33	(a) State a	and prove	e Basic p	proportic	onality th	eorem.						5
	(b)In triar	ngle ABC	C , DE∥ I	BC and A	AD=14 c	m ,DE=1	2 cm an	d BC=15	cm , Det	ermine A	.C.	
				A	1A CH	D	1	15 cm				
34	From a sc											5
	same heig	sht and sa	ame diar	neter is l	hollowed	l out.Find	d the tota	l surface	area of t	he remain	ning	
	solid .											
	20 200					OR						
	A farmer								-			
	10 m in d	iameter a	and 2 m	deep.If t	he water	flows th	rough th	e pipes a	t the rate	4km/hr,	in how	
	much time	e will the	e tank be	e filled co	ompletel	y ?						
100 10 2010		2012 1021										204
35	Find the A	rithmetic	mean of	the follo	wing freq	uency dis	tribution	table				5
	Marks	below	below	below	below	below	below	below	below	below	below	
	Ivia KS	10	20	30	40	50	60	70	80	90	100	
	Number	10	20	35	50	70	86	97	104	109	115	
	of 12 22 55 50 70 80 97 104 109 115											
	students											
					SI	ECTION	N E					
			Sect	ion E co	onsists of	f 3 avest	ions of 4	marks	ach			

36	The satellite image of Himalaya Mountain is shown below . The angle of elevation of the top of a hill from the foot of a tower is 60° and the angle of elevation of the top of the tower with height 50 meter from foot of the hill is 30°	
	On the basis of the above information, answer the following questions. (i)Find the horizontal distance between hill and tower.	1
	OR	1
	Find the height of the hill, if the distance between bottom of hill and tower is $50\sqrt{3}$. (ii)Find the distance from the foot of the tower to the top of the hill. (iii)Find the distance from the foot of the hill to the top of the tower.	2
37	The school auditorium was to be constructed to accommodate at least 1500 people. The chairs are to be placed in concentric circular arrangement in such a way that each succeeding circular row has 10 seats more than the previous one.	

	i)	If the first circular row has 30 seats, how many seats will be there in the 10th row?	1
	ii)	For 1500 seats in the auditorium, how many rows need to be there?	2
		OR	
		If 1500 seats are to be arranged in the auditorium, how many seats are still left to be put	
		after 10 th row?	
	iii)	If there were 17 rows in the auditorium, how many seats would be there in the middle	1
		row?	
38		ayground is marked with 10X10 grid as shown in figure . Three parrots are sitting at points	
		4), $P_2(6,7)$, $P_3(9,4)$ respectively .A koel 'K 'joins them and sit somewhere in the triangular	
	regio	n described by $\Delta P_1 P_2 P_3$ consider O as the origin	

