D.A.V. INSTITUTIONS, CHHATTISGARH

PRACTICE PAPER-3 : 2023-24

CLASS - XII

SUBJECT- MATHEMATICS (041)

Time: 3 Hrs.

Maximum Marks: 80

General Instructions:

- 1. All questions are compulsory.
- 2. The question paper has five sections. Section-A, Section-B, Section-C, Section-D and Section-E. There are 38 questions in the question paper.
- 3. Section-A has 18 MCQ questions and 2 Assertion- Reason based question of 1 marks each. Section-B has 5 Very Short Answer (VSA) type questions of 2 marks each, Section-C has 6 Short Answer (SA) type questions of 3 marks each, Section-D has 4 Long Answer (LA) type questions of 5 marks each and Section-E has 3 case based questions of 4 marks each.
- 4. There is no overall choice. However internal choice have been provided in some questions. Attempt only one of the alternatives in such questions.
- 5. Wherever necessary, neat and properly labelled diagram should be drawn.

		SEC	CTION-A		
	(Multiple Choice Questions)				
	(Each question carries 1 mark)				
Q1	If A is square matrix s	such that A ² = I , then (A-I) ³ +(A+I) ² -7A is equ	al to	
	(a) -A	(b) I-A	(c) I+A	(d) 3A	
Q2	If $A = \begin{bmatrix} 5 & x \\ y & 0 \end{bmatrix}$ and $A = A'$,then			
	(a) x = 0,y = 5	(b) x+y = 5	(c) x = y	(d) none of these	
Q3	The value of the expr	ession $\left \vec{a} \times \vec{b}\right ^2 + (\vec{a}.$	\vec{b}) ² is		
		$(b) \vec{a} . \left \vec{b}\right $		$(d) \qquad (\vec{a}.\vec{b})$	
Q4	If the function f defin	hed by f(x) = $\begin{cases} \frac{x^2 - 9}{x - 3}, & x \neq k \\ k, & x = k \end{cases}$	^{= 3} is continuous at x = 3	=3, then the value of K is	
	(a) 6	(b) 3	(c) -6	(d) 3	
Q5	If $f'(x) = x^2 e^{x^3}$, the	n <i>f</i> (x) is			
	(a) $\frac{1}{3}e^{x^3}$ +C	(b) $\frac{1}{3}e^{x^4}$ +C	(c) $\frac{1}{2}e^{x^3}+C$	(d) $\frac{1}{2}e^{x^2}+C$	

Q6	The sum of the order and degree of the following differential equation $\frac{d}{dx}\left\{\left(\frac{dy}{dx}\right)^3\right\} = 0$, is		
	(a) 5 (b) 4 (c) 3 (d) 2		
Q7	Corner points of the feasible region for an LPP are (0, 3), (1,1) and (3,0).Let Z = px + qy,		
	where p,q>0, be the objective function. The condition on p and q so that the minimum of		
	Z occurs at (3,0) and (1,1) is		
	(a) $p = q$ (b) $p = \frac{q}{2}$ (c) $p = 3q$ (d) $p=q$		
Q8	The value of μ such that the vectors $\vec{a} = 2\hat{\imath} + \mu\hat{\jmath} + \hat{k}$ and $\vec{b} = \hat{\imath} + 2\hat{\jmath} + 3\hat{k}$ are		
	orthogonal is		
	(a) 0 (b) 1 (c) $\frac{3}{2}$ (d) $-\frac{5}{2}$		
Q9	The value of $\int_{1}^{\sqrt{3}} \frac{dx}{1+x^2}$ is		
	(a) $\frac{\pi}{3}$ (b) $\frac{2\pi}{3}$ (c) $\frac{\pi}{6}$ (d) $\frac{\pi}{12}$		
Q10	If A is a square matrix of order n , then $ adj(A) =$		
	(a) $ A $ (b) $ A ^{n-1}$ (c) $ A ^n$ (d) $ A ^{n-2}$		
011	The corner points of the sheded bounded feesible region of an LDD are $(0,0)$ (20,0) (20, 20)		
Q11	The corner points of the shaded bounded feasible region of an LPP are (0,0),(30,0),(20,30) and (0,50) as shown in the figure .		
	and (0,50) as shown in the lighte .		
	$ \begin{array}{c} 100\\ 90\\ 80\\ 70\\ - \end{array} \qquad 3x + y = 90\\ 70 \end{array} $		
	$\begin{array}{c} 60 \\ 60 \\ 50 \\ 40 \\ 30 \end{array} + \begin{array}{c} C(0,50) \\ B(20,30) \end{array}$		
	$X' \stackrel{(50,0)}{\leftarrow} X' \stackrel{(50,0)}{\leftarrow} X $		
	The maximum value of the objective function $Z = 4x+y$ is		
	(a) 120 (b) 130 (c) 140 (d) 150		
Q12	If $\begin{vmatrix} x & 2 \\ 18 & x \end{vmatrix} = \begin{vmatrix} 6 & 2 \\ 18 & 6 \end{vmatrix}$, then x is equal to		
	(a) 6 (b) ±6 (c) -6 (d) 0		

٦

Q13	If A is a square matrix of order 3, such that A(adjA) = 10 I, then $ adj A $ is equal to		
	(a) 1 (b) 10 (c) 100 (d) 101		
Q14	Let A and B be two events . If P(A)=0.2,P(B)=0.4 ,P(AUB)=0.6 then $P\left(\frac{A}{B}\right)$ is equal to		
	(a) 1 (b) 0 (c) 0.2 (d) 0.4		
Q15	The integrated factor of the differential equation: $(1+x^2)\frac{dy}{dx} + y = e^{tan^{-1}x}$ is		
	(a) $\frac{1}{e^{tan^{-1}x}}$ (b) $2 e^{tan^{-1}x}$ (c) $3 e^{tan^{-1}x}$ (d) $e^{tan^{-1}x}$		
Q16	If y = $5e^{7x}$ + $6e^{-7x}$, show that $\frac{d^2y}{dx^2}$ is equal to		
	(a) 7y (b) 6y (c) 49y (d) 36y		
Q17	The projection of the vector 2i+3j+2k on the vector i+2j+k is		
	(a) $\frac{5\sqrt{6}}{3}$ (b) $\frac{5}{6}$ (c) $\frac{6}{5}$ (d) $\frac{\sqrt{6}}{19}$		
Q18	If the direction cosines of a line are k,k,k then		
	(a) k > 0 (b) 0 < k < 1 (c) k = 1 (d) $k = \frac{1}{\sqrt{3}}$ or $k = -\frac{1}{\sqrt{3}}$		
20 J	ASSERTION- REASON BASED QUESTIONS		
	ASSERTION- REASON BASED QUESTIONS		
	ASSERTION- REASON BASED QUESTIONS In the following questions, a statement of assertion (A) is followed by a statement of		
	In the following questions, a statement of assertion (A) is followed by a statement of Reason (R).Choose the correct out of the following choices.		
	In the following questions, a statement of assertion (A) is followed by a statement of Reason (R).Choose the correct out of the following choices. (a) Both A and R are true and R is the correct explanation of A		
	 In the following questions, a statement of assertion (A) is followed by a statement of Reason (R). Choose the correct out of the following choices. (a) Both A and R are true and R is the correct explanation of A (b) Both A and R are true and R is not the correct explanation of A 		
	 In the following questions, a statement of assertion (A) is followed by a statement of Reason (R). Choose the correct out of the following choices. (a) Both A and R are true and R is the correct explanation of A (b) Both A and R are true and R is not the correct explanation of A (c) A is true but R is false. 		
	 In the following questions, a statement of assertion (A) is followed by a statement of Reason (R). Choose the correct out of the following choices. (a) Both A and R are true and R is the correct explanation of A (b) Both A and R are true and R is not the correct explanation of A 		
Q19	 In the following questions, a statement of assertion (A) is followed by a statement of Reason (R).Choose the correct out of the following choices. (a) Both A and R are true and R is the correct explanation of A (b) Both A and R are true and R is not the correct explanation of A (c) A is true but R is false. (d) A is true but R is false. 		
Q19	In the following questions, a statement of assertion (A) is followed by a statement of Reason (R).Choose the correct out of the following choices. (a) Both A and R are true and R is the correct explanation of A (b) Both A and R are true and R is not the correct explanation of A (c) A is true but R is false. (d) A is true but R is false. Assertion(A) : The value of $cos\left(\frac{\pi}{2} + sin^{-1}\left(-\frac{1}{2}\right)\right) = \frac{1}{2}$		
Q19	 In the following questions, a statement of assertion (A) is followed by a statement of Reason (R).Choose the correct out of the following choices. (a) Both A and R are true and R is the correct explanation of A (b) Both A and R are true and R is not the correct explanation of A (c) A is true but R is false. (d) A is true but R is false. 		

	Reason (R) : Let line l_1 passes through the point (x_1, y_1, z_1) and parallel to the vector		
	whose direction ratios are $a_{1,}b_{1,}andc_{1,}$: Let line l_2 passes through the point (x_2, y_2, z_2)		
	and parallel to the vector whose direction ratios are $a_{2,}b_{2,}andc_{2,}$. Then both lines		
	$l_1 and l_2$ are coplaner if and only if $\begin{vmatrix} x_2 - x_1 & y_2 - y_1 & z_2 - z_1 \\ a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \end{vmatrix} = 0$		
	SECTION -B		
	This section comprises of very short answer type-question (VSA) of 2 marks each		
Q21	Find the value of $sin^{-1}[cos(\frac{33\pi}{5})]$		
	OR		
	Let y = R- {3} and B = R- {1}. Consider the function f:A→B defined by $f(x) = \left(\frac{x-2}{x-3}\right)$. Is f is		
	one-one and onto ? Justify your Answer.		
Q22	An edge of a variable cube is increasing at the rate of 5cm per second. How fast is the		
	volume increasing when the side is 15 cm.		
Q23	Find the vector of magnitude 6, which is perpendicular to both the vectors $2\hat{i} - \hat{j} + \hat{j}$		
	$2\hat{k}$ and $4\hat{\imath} - \hat{\jmath} + 3\hat{k}$		
	OR		
	Find the equation of a line in vector and cartesian form which passes through the point		
	(1,2,3) and is parallel to the vector $3\hat{\imath} + 2\hat{\jmath} - 2\hat{k}$		
Q24	If $x \sin(a + y) + sina \cos(a + y) = 0$, then prove that $\frac{dy}{dx} = \frac{\sin^2(a+y)}{\sin a}$		
Q25	If $\vec{a} + \vec{b} + \vec{c} = \vec{0}$ and $ \vec{a} = 3$, $ \vec{b} = 5$ and $ \vec{c} = 7$ then what is the angle between \vec{a} and \vec{b} .		
	SECTION C		
	(This section comprises of short type questions (SA) of 3 marks each)		
Q26	Find: $\int \frac{dx}{\sqrt{5-4x-2x^2}}$		

12 <u></u>			
Q27	Probabilities of solving specific problem independently by A and B are $\frac{1}{2}$ and $\frac{1}{3}$ respectively		
	. If both try to solve the problem independently .Find the probability that (i) the problem		
	is solved (ii) exactly one of them solves the problem.		
	OR		
	From a lot of 30 bulbs which include 6 defectives ,a sample of 4 bulbs is drawn at random		
	with replacement. Find the probability distribution of the number of defective bulbs.		
Q28	Evaluate: $\int_0^{\pi} \frac{x \sin x}{1 + \cos^2 x} dx$		
	OR		
	Evaluate: $\int_{-5}^{5} x+2 dx$		
Q29	Solve the differential equation:		
	$(1-y^2)(1+\log x) dx + 2xydy = 0$		
	OR		
	Solve the differential equation x dy - y dx = $\sqrt{x^2 + y^2}$ dx		
Q30	Solve the following Linear Programming Problem graphically:		
	Maximize: $Z = 100x + 120y$		
	Subject to : $5x + 8y \le 200, 5x + 4y \le 120, x, y \ge 0$		
Q31	Evaluate: $\int \frac{x^2}{(x^2+4)(x^2+9)} dx$		
s	SECTION D		
	This section comprises of long answer -type question (LA) of 5 marks each)		
Q32	Make a rough sketch of the region $\{(x, y): 0 \le y \le x^2 + 1, 0 \le y \le x + 1, 0 \le x \le 2\}$		
	and find the area of the region using integration.		
Q33	Let $A = \{1, 2, 3, \dots, 9\}$ and R be the relation in $A \times A$ defined by (a, b) R (c, d)		
	if $a + d = b + c$, for (a, b) , (c, d) in $A \times A$. Prove that R is an equivalence relation and also		
	obtain the equivalence class [(2,5)].		
. <u> </u>			

	OR		
	Consider f:R ₊ \rightarrow [-9, ∞) given by f(x) =5x ² +6x-9. Prove that f is bijective.		
Q34	An insect is crawling along the line $\frac{x-3}{1} = \frac{y-5}{-2} = \frac{z-7}{1}$ and another insect is crawling along		
	the line		
	$\frac{x+1}{7} = \frac{y+1}{-6} = \frac{z+1}{1}$. At what points on the lines should they reach so that the distance		
	between them is the shortest ? Find the shortest possible distance between them.		
	OR		
	The equation of motion of a rocket are:		
	X = 2t, y = -4t, z = 4t, where the time t is given in seconds, and the coordinates of a		
	moving point in km. What is the path of the rocket ?At what distances will the rocket be		
	from the starting point O(0,0,0) and from the following line in 10 seconds?		
	$\vec{r} = 20\hat{\imath} - 10\hat{\jmath} + 40\hat{k} + \mu(10\hat{\imath} - 20\hat{\jmath} + 10\hat{k})$		
Q35	Given two matrices A = $\begin{bmatrix} 1 & -1 & 0 \\ 2 & 3 & 4 \\ 0 & 1 & 2 \end{bmatrix}$ and B= $\begin{bmatrix} 2 & 2 & -4 \\ -4 & 2 & -4 \\ 2 & -1 & 5 \end{bmatrix}$ verify that BA=6I.Use the result to		
	solve the system x - y = 3, 2x + 3y + 4z = 17, y + 2z =7.		
	SECTION E		
	This section comprises of 3 case -study /passage -based questions of 4 marks each with		
	two sub-parts.First two case study questions have three sub-parts(i),(ii),(iii) of marks		
	1,1,2 respectively. The third case study question has two sub-parts of 2 marks each.		
Q36	Case – Study 1 : Read the following passage and answer the questions given below:		
	Some young entrepreneurs started an industry "Young achievers" for casting metal into		
	various shapes. They put up an advertisement online stating the same and expecting		
	order to cast method for toys, sculptures, decorative pieces and more.		
	·		

	A group of friends wanted to make innovative toys and hence contacted the "Young		
	achievers" to order them to cast metal into solid half cylinders with a rectangular base		
	and semi circular ends.		
	h		
	(i) If r,hand V are radius, length and volume respectively casted half cylinder, then find the		
	total surface area function S of the casted half cylinder in terms of V and r.		
	(ii)) For the given volume V, Find the condition for the total surface area S to be		
	minimum.		
	(iii) Use second derivative test to prove that Surface area is minimum for given		
	volume.		
	OR		
	(iii) Find the ratio h: 2r for S to be minimum.		
Q37	Dr. Rohan residing in Delhi went to see an apartment of 3BHK in Noida. The window of		
	the house in the form of a rectangle surrounded by a semicircular opening having a		
	perimeter of the window 10 m as shown in the figure		
	ym → xm →		
	(i) If x and y represents the length and breadth of the rectangular region, then		
	what is the relation between the variables.		

	(ii)	Dr. Rohan is interested in maximize the area of the whole window.For this to
		happen what should be value of x?
	OR	
	(ii) For maximum value of area ,find the breadth of the rectangular part of the	
		window.
	(iii)	Find the maximum area of window.
Q38	Mahind	ra Tractors is India's leading farm equipment manufacturer. It is the largest tractor
	selling f	actory in the world. This factory has two machine A and B . Past record shows that
	machine A produced 60% and machine B produced 40% of the output(tractors). Further	
	2% of the tractors produced by machine A and 1% produced by machine B were defective.	
	All the tractors are put into one big store hall and one tractor is chosen at random.	
	(i)	Find the total probability of chosen tractor (at random) is defective.
	(ii)	If in random choosing, chosen tractor is defective ,then find the probability that
		the chosen tractor is produced by machine 'A'

