Roll No. :

Please check that this question paper contains 38 questions and 09 printed pages.

D.A.V. INSTITUTIONS, CHHATTISGARH PRACTICE PAPER-4 CLASS: X SUBJECT: MATHEMATICS (BASIC)

TIME: 3 HOURS

MAX MARKS: 80

General Instructions:

- 1. This Question Paper has 5 sections A E.
- 2. Section A has 20 MCQs carrying 1 mark each.
- 3. Section B has 5 questions carrying 2 marks each.
- 4. Section C has 6 questions carrying 3 marks each.
- 5. Section D has 4 questions carrying 5 marks each.
- 6. Section E has 3 case based integrated units of assessment (04 marks each) with sub-parts of the values of 1, 1 and 2 marks each respectively.
- 7. All questions are compulsory. However, an internal choice of 2 questions of 5 marks, 2 questions of 3 marks and 2 Questions of 2 marks has been provided. An internal choice has been provided in the 2 marks questions of Section E.
- 8. Draw neat figures wherever required. Take $\pi = \frac{22}{7}$ wherever required if not

stated.

SECTION A			
Section A consists of 20 questions of 1 mark each.			
Q.		Marks	
No.			
1	If common difference of an AP is -6, then value of $a_{20} - a_{14}$ is	1	
	a) 36 b) 6 c) -36 d) -6		
2	In the given figure, PQ and PR are tangents drawn from P to the circle with centre O such that		
	$\angle QPR = 65^{\circ}$, the measure of $\angle QOR$ is -	1	

		P 65°	0		
	a) 65 ⁰	b) 125 ⁰	c) 115 ⁰	d) 90 ⁰	
3	If $2\cos\theta = 1$, then the	value of θ is-			1
	a) 60 ⁰	b) 45 ⁰	c) 30^{0}	d) 90 ⁰	
4	For the following distri	bution			1
		Marks Below 10 20 30 40 50	No. of students 1 5 13 15 16		
	The modal class is a) 30-40	b) 40-50	c) 20-30	d) 10-20	
5	The pair of linear equat			-)	1
	a) a unique solutionc) infinitely many solut		b) exactly two solutiond) no solution	ons	
6	If x = a sin θ and y = b cos θ then $b^2 x^2 + a^2 y^2$ is equal to				1
	a) 1	b) $a^2 b^2$	c) $\frac{a^2+b^2}{a^2b^2}$	d) $a^2 + b^2$	
7	The volume of a cone of	f radius r and height 3	r is		1
	a) $\frac{1}{3}\pi r^{3}$	b) 3π <i>r</i> ³	c) $9\pi r^3$	d) πr^3	
8	The sum and product of	f the zeros of the polyr	nomial $p(x) = x^2 + 5x + 6$	are respectively	1
	a) 5, – 6	b) – 5, 6	c) 2,3	d) – 2, – 3	
9	The prime factorization	of natural number 28	8 is		1

	a) $2^4 x 3^3$	b) $2^4 x 3^2$	c) $2^5 x 3^2$	d) $2^{5}x 3^{1}$	
10	The two roots of the ed	quation $3x^2 - 2\sqrt{6x} + 2$ are			1
	a) real and distinct	b) not real	c) real and equal	d) rational	
11	The distance between	the points $(3,0)$ and $(0, -3)$ is			1
	a) $2\sqrt{3}$ units	b) 6 units	c) 3 units	d) $3\sqrt{2}$ units	
12	Two cubes each of 5 c	m edge are joined end to end.	The surface area of the re	sulting cuboid is	1
	a) 200 <i>cm</i> ²	b) 300 <i>cm</i> ²	c) 125 <i>cm</i> ²	d) 250 cm ²	
13	A die is rolled once. T	he probability that a composit	e number comes up is		1
	a) $\frac{1}{2}$	b) $\frac{2}{3}$	c) $\frac{1}{3}$	d) 0	
14	Median and mode of a	distribution are 25 and 21 resp	pectively. Mean of the da	ta using empirical	
	relationship is				`1
	a) 27	b) 29	c) 18	d) $\frac{29}{3}$	
15	The length of the arc o	f a circle of radius 14 cm whic	ch subtends an angle of 6	0^{0} at the centre of	
	the circle is				1
	a) $\frac{44}{3}$ cm	b) $\frac{88}{3}$ cm	c) $\frac{308}{3}$ cm	d) $\frac{616}{3}$ cm	
16	The zeros of the quadr	atic polynomial $16x^2$ - 9 are			1
	a) $\frac{3}{4}, \frac{3}{4}$	b) $-\frac{3}{4}, \frac{3}{4}$	c) $\frac{9}{16}$, $\frac{9}{16}$	$d)-\frac{3}{4},-\frac{3}{4}$	
17					
			P 2 cm	oth of OC is	
	0.461700	$B \parallel CD$, if AB = 5cm, CD = 2cm			
	a) $\frac{15}{2}$ cm	b) $\frac{10}{3}$ cm	c) $\frac{6}{5}$ cm	d) $\frac{3}{5}$ cm	1

18	At some time of the day, the height and length of the shadow of a man are equal. The sun's altitude is		
	a) 30^{0} b) 45^{0} c) 60^{0} d) 90^{0}	1	
19			
	Assertion (A): PA and PB are tangents to a circle centred at O and $\angle OPA = 30^{\circ}$ then	1	
	ΔPAB is an equilateral triangle.		
	Reason (R): Lengths of tangents drawn from an external point to a circle are equal.		
	a) Both Assertion (A) and Reason (R) are true and Reason (R) is the correct explanation of Assertion (A).		
	b) Both Assertion (A) and Reason (R) are true and Reason (R) is not the correct explanation of		
	Assertion (A).		
	c) Assertion (A) is true but Reason (R) is false.		
	d) Assertion (A) is false but Reason (R) is true.		
20	Assertion (A): An event is very likely to happen if its probability is 0.9999.		
20	Reason (R): Probability of a sure event is always 1.	1	
	a) Both Assertion (A) and Reason (R) are true and Reason (R) is the correct explanation of Assertion (A).		
	b) Both Assertion (A) and Reason (R) are true and Reason (R) is not the correct explanation of Assertion (A).		
	c) Assertion (A) is true but Reason (R) is false.		
	d) Assertion (A) is false but Reason (R) is true.		
	SECTION B		
	Section B consists of 5 questions of 2 marks each.		
21	If the points A(2,3); B(-5,6); C(6,7) and D(p, 4) are the vertices of a parallelogram ABCD		
	taken in order, find the value of p.	2	

22	Find the HCF of the numbers 540 and 630 using the prime factorization method.	2
	OR	
	Show that (15) ⁿ cannot end with digit 0 for any natural number n.	
23	Three coins are tossed together:	2
	i) Write all possible outcomes.	
	ii) Find the probability of having atmost 2 Heads.	
24	Prove that $\sec\theta(1 - \sin\theta)(\sec\theta + tan\theta) = 1$	2
	OR	
	Evaluate $sin^2 60^0 - 2cos^2 45^0 + \frac{1}{2} cosec^2 30^0$	
25	Find the centre and radius of a circle having end points of its diameter as $(3, -10)$ and $(1, 4)$.	2
	SECTION C	
	Section C consists of 6 questions of 3 marks each.	
26	E is a point on the side AD produced of a parallelogram ABCD and BE intersects CD at F.	
	Show that $\triangle ABE \sim \triangle CFB$	3
	OR	
	In the given figure CM and RN are respectively the medians of ΔABC and ΔPQR , If	
	$\Delta ABC \sim \Delta PQR$ then prove that $\Delta AMC \sim \Delta PNR$	
27	Find the zeros of the quadratic polynomial $x^2 + 6x + 8$ and verify the relationship between the	0
	zeros and the coefficients.	3
28	Prove that $\frac{1-\cos\theta}{1+\cos\theta} = (\cos ec\theta - \cot\theta)^2$	3
29	Prove that $4+2\sqrt{3}$ is an irrational number. Given that $\sqrt{3}$ is an irrational number.	3
	OR	

	Prove that $\sqrt{5}$ is an irrational number.	
30	The diagonal of a rectangular field is 60 m more than the shorter side. If the longer side is 80 m more than the shorter side, find the length of the sides of the field.	3
31	AB and CD are arcs of two concentric circles of radii 3.5 cm and 10.5 cm respectively with centre at O. Find the area of shaded region if $\angle AOB = 60^{\circ}$. Also find the length of the arc CD.	3
	$C \qquad D \\ 10.5 \text{ cm} \\ A \qquad 60^{\circ} \text{ B} \\ 3.5 \text{ cm} \\ O \qquad O$	
	SECTION D	
	Section D consists of 4 questions of 5 marks each.	
32	Find the values of a and b for which the system of linear equations $3x + 4y = 12$ and	
	(a + b)x + 2(a - b)y = 24 have infinitely many solutions.	5
	OR	
	5 chairs and 1 table together cost Rs 1750 while 4 chairs and 3 tables together cost Rs 1950.	
	Find the cost of 1 chair and 1 table. What would be the total cost of 10 chairs and 10 tables?	
33	Prove that the length of tangents drawn from an external point to a circle are equal.	
	Using the above theorem prove that the parallelogram circumscribing a circle is a rhombus.	5

34	Prove that if a lin	e is drawn parallel to or	he side of a triangle, to intersect the other	two sides in
	distinct points the	n the other two sides are	divided in the same ratio.	5
35	Find the Mean and Median of the following data:			5
		MARKS	NUMBER OF STUDENTS	
		0-10	3	
		10 -20	5	
		20-30	16	
		30-40	12	
		40 - 50	13	
		50-60	20	
		60-70	6	
		70-80	5	
	Find the Mean and	d Mode of the data given		
		WEIGHT (in kg)	NUMBER OF STUDENTS 5	
		40-45		
		45 - 50 50- 55	20	
		30-33	70	
1		55.60		
		55-60	24	
		60-65	24 28	
			24	
		60-65 65-70	24 28	
		60-65 65-70	24 28 12	
36	Case Study -1	60-65 65-70	24 28 12 SECTION E	
36	122.8	60-65 65-70 Section E consists o	24 28 12 SECTION E	nnual rings 1+1+2

	Based on	the above, answer the following questions:	
	i)	Identify A.P. for the number of squares in each row.	
	ii)	Identify A.P. for the number of triangles in each row.	
	iii)	If the length of each shaded square is 2 cm, then find the shaded area when 15 rows	
		have been designed.	
		OR	
		Write a formula for finding the total number of triangles in 'n' number of rows.	
		Hence, find S_{10} .	
8	Case St	udy -3	
	There are	e two temples on each bank of a river. One temple is 50 m high. A man, who is	
	standing	on the top of 50 m high temple, observed from the top that angle of depression of the	
	top and f	boot of another temple are 30° and 60° respectively.	1+1+2
		$ \begin{array}{c} \int 0 \\ \int 0 $	
	Based on	the above information, answer the following questions-	
	i)	Find the measure of $\angle ADF$.	
	ii)	Find the measure of $\angle ACB$.	
	iii)	Find the width of the river.	
		OR	
	1	Calculate the height of the other temple.	

