Roll No. :

Please check that this question paper contains 38 questions and 7 printed pages.

D.A.V. INSTITUTIONS, CHHATTISGARH PRACTICE PAPER 4 CLASS: X SUBJECT: MATHEMATICS (STANDARD)

TIME: 3 HOURS

MAX MARKS: 80

General Instructions:

- 1. This Question Paper has 5 sections A E.
- 2. Section A has 20 MCQs carrying 1 mark each.
- 3. Section B has 5 questions carrying 2 marks each.
- 4. Section C has 6 questions carrying 3 marks each.
- 5. Section D has 4 questions carrying 5 marks each.
- 6. Section E has 3 case based integrated units of assessment (04 marks each) with sub-parts of the values of 1, 1 and 2 marks each respectively.
- 7. All questions are compulsory. However, an internal choice of 2 questions of 5 marks, 2 questions of 3 marks and 2 Questions of 2 marks has been provided. An internal choice has been provided in the 2 marks questions of Section E.

8. Draw neat figures wherever required. Take $\pi = \frac{22}{7}$ wherever required if not

stated.

			SECTION A			
Section A consists of 20 questions of 1 mark each.						
Q.					Marks	
No.						
1	If two positi	ive integers p and q ca	n be expressed as $p = a$	b^2 and $q = a^3b$ where a, b being p	rime	
	numbers, then LCM (p, q) is equal to					
	(a) ab	(b) a ² b ²	(c) $a^{3} b^{2}$	(d) $a^2 b^3$		
2	What is the common difference of an AP in which $a_{18} - a_{14} = 32$?				1	
	(a) -8	(b) -4	(c) 4	(d) 8		
3	The sum of the zeroes of the given quadratic polynomial $-3x^2 + k$ is				1	
	(a) k	(b) 0	(c) -3	(d) $\frac{k}{-3}$		
4	In ∆ABC, D	$E \mid \mid BC$, the value of x	will be		1	

			т /	A x+3				
	x + 1 $x + 5$ $x + 5$							
	(a) 1	(b) 2	Β∠	(c) 3	C	(d) 4		
5	The distance of	of the point (3	,4) from the C	Drigin is				1
	(a) 3	(b) 4		(c) 5		(d) 7		
6	If $4\tan A = 3$, t	the value of $\frac{si}{si}$	$\frac{in A - cos A}{in A + cos A}$ is					1
	(a) $\frac{1}{7}$	(b) 7		(c) 5		(d) $\frac{-1}{7}$		
7	A circle can h	ave	parallel	tangents at th	e most.			1
	(a) 1	(b) 2		(c) 3		(d) infinite		
8	If α , β are the	roots $x^2 + px + q$	q = 0, then the	value of $\frac{\alpha}{\beta}$ +	$+\frac{\beta}{\alpha}$ is			1
	(a) $\frac{p^2-2q}{q}$	(b) $\frac{2q}{q}$	$\frac{-p^2}{2}$	(c) $\frac{p^2+2}{q}$	<u>q</u>	(d) none of	these	
9	The pair of eq	e pair of equations $x = a$ and $y = b$ graphically represents lines which are						
	(a) parallel	(b) co	incident	(c) interse	cting at (b, a)	(d) intersect	ting at (a, b)	
10	A bag contains 15 orange candies. If one candy is taken out of the bag, then probability of the						1	
	candy to be ar	n orange candy	y is					
	(a) $\frac{1}{15}$	(b) 15		(c) 0		(d) 1		
11	Consider the following frequency distribution of the heights of 60 students of a class						1	
	Height (in cm)	150-155	155-160	160-165	165-170	170-175	175-180	
	No of students	15	13	10	8	9	5	
	The upper limit of the median class in the given data is							
	(a) 155	(b)160		(c) 165		(d) 170		
12	If $sinA + cosA$	$A = \sqrt{2}$, then ta	anA + cotA =					1
	(a) 1	(b) 2		(c) 3		(d) 4		
13	Which of the	following can	not be the pro	bability of an	event?			1

	(a) 0	(b) 1	(c) 2	(d) 20%			
14	A tangent PQ	at a point P of a circle of	radius 5 cm meets a line	e through the centre O at a point	`1		
	Q so that $OQ = 12$ cm, length of PQ is						
	(a) 12 cm	(b) 13 cm	(c) 8.5 cm	(d) $\sqrt{119}$ cm			
15	Which term o	f the A.P. 3,8,13,18,	is 78?		1		
	(a) 15	(b) 16	(c) 17	(d) 18			
16	If tangents PA	and PB from a point P to	a circle with centre O a	are inclined to each other at	1		
	angle of 80°,	then ∠POA is equal to					
	(a) 50°	(b) 60°	(c) 70°	(d) 80°			
17	In triangles A	BC and DEF, $\angle B = \angle E$, \angle	$F = \angle C$ and $AB = 3 DE$.	Then, the two triangles are	1		
	(a) congruent	but not similar	(b) congruent as	well as similar			
	(c) neither con	ngruent nor similar	(d) similar but not	t congruent			
18	Volumes of tw	vo spheres are in the ratio	64:27. The ratio of their	r surface areas is	1		
	(a) 3 : 4	(b) 4 : 3	(c) 9 : 16	(d) 16 : 9			
19	Assertion (A): If end points of the diameter of a circle is (-2,5) and (4,9), then the centre of the						
	circle is (3,7)						
	Reason (R): The mid point of the line segment joining (x_1, y_1) and (x_2, y_2) is $\left(\frac{x_1+y_1}{2}\right)$						
	Choose the c	orrect option:-					
	a) Both Asse	rtion (A) and Reason (R) a	are true and Reason (R)	is the correct explanation of			
	Assertion (A).						
	b) Both Asse	rtion (A) and Reason (R) a	are true and Reason (R)	is not the correct explanation of			
	Assertion	(A).					
	c) Assertion (A) is true but Reason (R)	is false.				
	d) Assertion (A) is false but Reason (R) is true.						
20	Assertion (A)	: If mode= 10 and mean =	10, then the median is 1	10	1		
	Reason (R):	mode = 3 median - 2 mean	1				
	Choose the correct option:-						
	a) Both Assertion (A) and Reason (R) are true and Reason (R) is the correct explanation of						
	Assertion (A).						
			are true and Reason (R)) is not the correct explanation			
	of Assert	ion (A).					

	c) Assertion (A) is true but Reason (R) is false.								
	d) Assertion (A) is false but Reason (R) is true.								
	SECTION B								
	Section B consists of 5 questions of 2 marks each.								
21	Evaluate the f	ollowing:						2	
	50	cos ² 60 ⁰ +4 <i>sec</i> ²	² 30 ⁰ -tan ² 45 ⁰						
	_	cos ² 30 ⁰ +	sin ² 30 ⁰						
				OR					
	Prove that:								
	cosA	sin ² A							
	$1 - \tan A + \frac{1}{\sin A}$	$\frac{\sin^2 A}{inA - \cos A} =$	sinA + cosA						
22	Find a point o	n the y-axis w	hich is equidi	stant from the	e points (5, -2)	and (-3,2).		2	
23	Two concentri	ic circles are o	of radii 4 cm a	nd 3 cm. Find	the length of	the chord of t	he larger	2	
	circle which t	touches the sm	aller circle.						
24	If the LCM of 480 and 256 is 10m+4. Find the value of m.							2	
25	Find the ratio	in which the l	ine segment j	oining the poi	nts (-3,10) and	d (-6,8) is divi	ided by the	2	
	point (-1,6).								
	OR								
	Show that the points $(1, 7)$, $(4, 2)$, $(-1, -1)$ and $(-4, 4)$ are the vertices of a square.								
				SECTION C					
		Sectio	on C consists	of 6 question	s of 3 marks	each.			
26	If $\sin \theta + \cos \theta$	$\theta = 3$, then pro-	ove that $\tan \theta$	$+\cot\theta = 1$				3	
27	If mode of the following frequency distribution is 55, then find the value of <i>x</i> .						3		
	Class	0-15	15-30	30-45	45-60	60-75	75-90		
	Frequency	10	7	x	15	10	12		
					A provide a second s		I		
28	Prove that $\sqrt{2}$	is irrational.					2	3	
	OR								
	Prove that $\sqrt{2} + \sqrt{5}$ is irrational.								
29	Solve: 21 <i>x</i> +	47y = 110						3	

	47x + 21y = 162			
30	Find how many integers between 200 and 500 are divisible by 8.	3		
	OR			
	The first and the last terms of an AP are 17 and 350 respectively. If the common difference is 9,			
	how many terms are there and what is their sum?			
31	If $\triangle ABC \sim \triangle DEF$, $AB = 4$ cm, $DE = 6$ cm, $EF = 9$ cm and $FD = 12$ cm, find the perimeter of $\triangle ABC$.	3		
	SECTION D			
	Section D consists of 4 questions of 5 marks each.As observed from the top of a 100 m high lighthouse from the sea-level, the angles of depression of two ships are 30° and 45°. If one ship is exactly behind the other on the same side of the light house, find the distance between the two ships.ORFrom the top of a building 60 m high, the angles of depression of the top and bottom of a tower are observed to be 45° and 60°, respectively. Then, find the height of the tower. [Take, $\sqrt{3} =$ 1.7321]			
32	As observed from the top of a 100 m high lighthouse from the sea-level, the angles of	5		
	depression of two ships are 30° and 45°. If one ship is exactly behind the other on the same side			
	of the light house, find the distance between the two ships.			
	OR			
	From the top of a building 60 m high, the angles of depression of the top and bottom of a tower			
	are observed to be 45° and 60°, respectively. Then, find the height of the tower. [Take, $\sqrt{3}$ =			
	1.7321]			
33	A triangle ABC is drawn to circumscribe a circle of radius 4 cm such that the segments BD and	5		
	DC into which BC is divided by the point of contact D are of lengths 8 cm and 6 cm			
	respectively (see figure). Find the sides AB and AC.			
	A O $C \longleftrightarrow 6 \text{ cm} \rightarrow D \longleftrightarrow 8 \text{ cm} \rightarrow B$			
34	Area of a sector of a circle of radius 36 cm is 54 cm ² . Find	5		
	i. the length of the corresponding arc of the sector.			
	ii. area of the major sector.			
35	A motor boat whose speed is 18 km/hr in still water takes 1 hr more to go 24 km upstream than	~		
	to return downstream to the same spot. Find the speed of the stream.	5		
	OR			

	3r r				
	Rajesh has been given the task of designing a boiler for NTPC. Boiler consist of a cylindrical				
	part in the middle and two hemispherical parts at both ends. The cross section of boiler is given				
	below. Length of the cylindrical part is 3 times the radius of the hemispherical part.				
	On the basis of the above information, answer the following questions:				
	i. Write an expression for the curved surface area of the cylindrical part of Boiler?	1			
	ii. What is the total surface area of Boiler?	1			
	iii. How much is the volume of the boiler?	2			
	OR				
	What is the ratio of volume to the surface area of the boiler?				
38	Lavanya throws a ball upwards, from a rooftop, which is 20 m above the ground. It will reach a				
	maximum height and then fall back to the ground. The height of the ball from the ground at				
	time t is h, which is given by $h = -4t^2 + 16t + 20$.				
	On the basis of the above information, answer the following questions:				
	i. What is the height of the ball at $t=0$?	1			
	ii. What is the height reached by the ball after 1 second?	1			
	iii. How long will the ball take to hit the ground?	2			
	OR				
	What are the two possible times to reach the same height of 32 m?				

