PRACTICE PAPER 5

CLASS X

TIME: 3 Hours

SUBJECT: MATHEMATICS (STANDARD)

MAX MARKS: 80

General Instructions:

1 This Question Paper has 5 Sections A-E.

2 Section A has 20 MCQs carrying 1 mark each.

3. Section B has 5 questions carrying 02 marks each.

4. Section C has 6 questions carrying 03 marks each.

5. Section D has 4 questions carrying 05 marks each.

6. Section E has 3 case based integrated units of assessment (04 marks each) with sub-parts of the values of 1, 1 and 2 marks each respectively.

7. All Questions are compulsory. However, an internal choice in 2 Qs of 2 marks, 2 Qs of 3 marks and 2 Questions of 5 marks has been provided. An internal choice has been provided in the 2 marks Questions of Section E.

8. Draw neat figures wherever required. Take $\pi = 22/7$ wherever required if not stated.

2 	SECTION A										
	Section A consists of 20 questions of 1 mark each										
Q No.											
1	If n is even prime number, $2(7^n + 8^n)$ ends with										
	a) 0 b) 2 c) 3 d) 6										
2	a) 0 b) 2 c) 3 d) 6 What should be added to $x^2 - 5x + 4$, so that 3 is a zero of the resulting	1									
	polynomial?										
	a) -10 b) -2 c) 2 d) 10										
3	If $x = a$, $y = b$ is the solution of the equations $x - y = 2$ and $x + y = 4$, then the	1									
	values of a and b are										
	a) $x = 3$, $y = -1$ b) $x = 3$, $y = 1$										
	c) $x = 1, y = 3$ d) $x = -3, y = 1$										
4	If $(p-1)$ is a root of the quadratic equation $x^2 + px + (1 - p) = 0$, then both the										
	roots are										
	a) 0, -1 b) -1,1 c) 0,1 d) -1,2										
5	If 18, a, b, -3 are in A.P. then $a + b =$										
	a) 19 b) 15 c) 11 d) 7										
6	One end of a line of length 17 units is at a point (3,4). If the abscissa of the other 1										
	end is 11, then it's ordinate will be										
	a) 11 or -19 b) -11 or -19 c) -11 or 19 d)11 or 19										
	Page 1 of 8										

7	The vertices of a triangle are $(0,0)$, $(3,0)$ and $(0,4)$. The centroid of the triangle is	1						
	(1) (1)	_						
-		1						
8	Δ ABC is an equilateral triangle such that AD \perp BC, then AD ² =							
	a) $4CD^2$ b) $3CD^2$ c) $2CD^2$ d) CD^2							
9	If the angle between two radii of a circle is 110°, then the angle between the	1						
	tangents at the ends of the radii is							
	a) 90° b) 70° c) 50° d) 40°							
10	At one end A of a diameter AB of a circle of radius 5 cm, tangent XAY is drawn to	1						
	the circle. The length of the chord CD parallel to XY and at a distance 8 cm from							
	A is							
	a) 4 cm b) 5 cm c) 6 cm d) 8 cm							
11	$(\sin 30^{\circ} + \cos 60^{\circ}) - (\sin 60^{\circ} + \cos 30^{\circ}) =$	1						
	a) 0 b) $1 - \sqrt{3}$ c) $1 + \sqrt{3}$ d) $1 + 2\sqrt{3}$							
12	x tan $45^{\circ} \sin 30^{\circ} = \cos 30^{\circ} \tan 30^{\circ}$ then x is	1						
	a) $\sqrt{3}$ b) 1 c) $\frac{1}{2}$ d) $\frac{1}{\sqrt{2}}$							
13	If two towers of heights h_1 and h_2 subtend angles of 60° and 30° respectively at the	1						
	midpoint of the line joining their feet, then $h_1:h_2 =$							
	a) 1:3 b) 1:2 c) 2:1 d) 3:1							
14	The area of a sector of a circle with radius 6 cm if the angle of the sector 60°							
	a) $\frac{142}{7}$ b) $\frac{152}{7}$ c) $\frac{132}{7}$ d) $\frac{122}{7}$							
15		1						
15	If the sum of the areas of two circles with radii R_1 and R_2 is equal to the area of a single of radius R then	1						
	circle of radius R, then $P = P = P = P = P = P = P = P = P = P $							
11	a) $R_1+R_2 = R$ b) $R_1^2 + R_2^2 = R^2$ c) $R_1 + R_2 < R$ d) $R_1^2 + R_2^2 < R^2$	1						
16	A die is thrown. The probability of getting an odd number is							
	a) $\frac{1}{4}$ b) $\frac{1}{3}$ c) $\frac{1}{2}$ d) $\frac{2}{3}$							
17	The sum of the probabilities of all elementary events of an experiment is p,then	1						
	a) $0 b) 0 \le p < 1 c) p = 1 d) p = 0$							
18	The mode and mean is given by 7 and 8 respectively, then the median is	1						
	a) $\frac{1}{13}$ b) $\frac{13}{3}$ c) $\frac{23}{3}$ d) 33							
19	Assertion: The sum of the length, breadth, and height of a cuboid is 19 cm and							
2	its diagonal is $5\sqrt{5}$ cm. Its surface area is 236 cm ² . Reason: The lateral surface area of a cuboid is $2(1 + b)$.							
	a) Both assertion (A) and reason (R) are true and reason (R) is the correct explanation of assertion (A).							
	Page 2 of 8							

	b) Both assertion (A) and reason (R) are true but reason (R) is not the correct explanation of assertion (A).c) Assertion (A) is true but reason (R) is false.					
	d) Assertion (A) is false but reason (R) is true.					
20	Assertion: Sum of first 10 terms of the arithmetic progression 0.5, 1.0, 1.5, is 27.5.Reason: Sum of n terms of an AP is given as $S_n = \frac{n}{2} [2a + (n-1) d]$ where a is					
	first term and d common difference.					
	a) Both assertion (A) and reason (R) are true and reason (R) is the correct explanation of assertion (A).					
	b) Both assertion (A) and reason (R) are true but reason (R) is not the correct					
	explanation of assertion (A). c) Assertion (A) is true but reason (R) is false.					
	d) Assertion (A) is false but reason (R) is true.					
	SECTION B					
	Section B consists of 5 questions of 2 marks each					
21	Show that $3 + 5\sqrt{2}$ is irrational given that $\sqrt{2}$ is irrational.	2				
22	If one diagonal of a trapezium divides the other diagonal in the ratio $1:3$, prove	2				
22	that one of the parallel sides is three times the other.	2				
23	In the given figure, PQ is a tangent from an external point P to a circle with centre	2				
25		2				
	O and OP cuts the circle at T and QOR is the diameter. If $\angle POR = 130^{\circ}$ and S is a					
	point on the circle, find $\angle 1 + \angle 2$.					
24	If $\cos (40 + x) = \sin 30^\circ$, find the value of x.	2				
	OR					
	If $sin(A + B) = 1$ and $cos(A - B) = 1$, find A and B.					
25	Find the area of the minor segment of a circle of radius 42cm, if length of the	2				
	corresponding arc is 44cm.					
	OR					
	AB and CD respectively the arcs of two concentric circles of radii 21 cm and 7 cm					
	Page 3 of 8					

	and centre O. If $\angle AOB = 30^{\circ}$, find the area of the shaded region. $A = \frac{B}{C + C} = \frac{B}{21 \text{ cm}}$	
	SECTION C	
	Section C consists of 6 questions of 3 marks each	
26	Find the smallest number which when increased by 17 is exactly divisible by 520 and 468.	3
27	If the zeroes of the polynomial $x^2 + px + q$ are double in value to the zeroes of $2x^2 - 5x - 3$, find the value of p and q.	3
28	Vijay had some bananas, and he divided them into two lots A and B. He sold the first lot at the rate of Rs.2 for 3 bananas and the second lot at the rate of Rs. 1 per banana and got a total of Rs.400. If he had sold the first lot at the rate of Rs. 1 per banana and the second lot at the rate of Rs. 4 for 5 bananas, his total collection would have been Rs. 460.Find the total number of bananas he had.	3
	OR Solve for x and y: 99x + 101y = 499 101x + 99y = 501	
29	O is the centre of a circle passing through the points A, B, C. If $\angle PAB = \angle BAC$, show that PQ is a tangent to the circle at A. OR In the given figure, PQ is a tangent drawn at a point P to a circle with centre O. OQ intersects the circle at R such that OR = RQ. If PQ = $3\sqrt{3}$ cm, find the radius of the circle.	3
30	If $\tan \theta + \sin \theta = m$ and $\tan \theta - \sin \theta = n$, show that $m^2 - n^2 = 4\sqrt{mn}$	3
L	Page 4 of 8	

31	If the median of the distribution given below is 28.5, find the values of x and y								3		
	Class	0 – 10	10 - 20	20 - 30	30 - 40	40 - 50	50-60	Total			
	Interval										
	Frequency	5	Х	20	15	У	5	60			
	SECTION D										
32	Section D consists of 4 questions of 5 marks each A trader bought a number of articles for Rs. 900. Five articles were found										
	damaged. He							or it. He	625773		
	got a profit o	f Rs. 80	on the who	ole transact	ion. Find t	he number	of articles	he			
	bought.										
33	i) State and			-	heorem.				5		
	ii) Express x	in terms	of a,b and	с							
				Å							
	n /45° / 45°										
	B b E c C										
34	A toy is in th	e form o	f a hemisn	here surma	unted by a	right circ	ilar cone o	of the	5		
			-			-					
	same base radius as that of the hemisphere. If the radius of the base of the cone is 21cm and its volume is $\frac{2}{2}$ of the volume of the hemisphere, calculate the height of										
	the cone and the surface area of the toy. (Use $\pi = 22/7$)										
	OR										
	From a solid cylinder whose height is 8 cm and radius 6 cm, a conical cavity of										
	height 8 cm and of base radius 6 cm, is hollowed out. Find the volume of the										
	remaining solid correct to two places of decimals. Also find the total surface area										
	of the remain	ning solid	$(\text{Use }\pi =$	3.14)							
35	The followin prepared by t			300 passer	ngers flyin	g from Del	hi to Pune	is	5		
	1			Page 5	of 8						
				- 24252							

	Age	Less than 10	Less than 20	Less than 30	Less than 40	Less than 50	Less than 60	Less than 70	Less than 80			
	No of passengers	14	44	82	134	184	245	287	300			
	Find the mean age of the passengers.											
	SECTION E											
36	Case study based questions are compulsory 36 Case study – 1											
	Image: Constraint of the previous day. If on first day of practice he makes 3000 push-ups and continues to practice regularly till his target is achieved.									push-ups practices as		
	Based on the above information, answer the following questions:i)Form an A.P representing the number of push-ups per day .1											
	ii) Find											
	OR Find the ratio of total number of push-ups performed by Nitesh on 10th day and on 20th day											
	iii) Find the minimum number of days he needs to practice before the day his goal is accomplished?									1		
		Page 6 of 8										

Case study – 2

Two friends William and Harry works in the same office in Toronto. In the Christmas vacation, they both decided to go to their home towns represented by Town X and Town Y. Town X and Town Y are connected by trains from the same station A near to their office in Toronto. The situation of Town X, Town Y and station A is shown on the coordinate axis.

