Roll No. :____

Please check that this question paper contains 38 questions and 10 printed pages.

D.A.V. INSTITUTIONS, CHHATTISGARH PRACTICE PAPER 2 CLASS: X

SUBJECT: MATHEMATICS (STANDARD)

TIME: 3 HOURS

MAX MARKS: 80

General Instructions:

1. This Question Paper has 5 sections A – E.

2. Section A has 20 MCQs carrying 1 mark each.

3. Section B has 5 questions carrying 2 marks each.

4. Section C has 6 questions carrying 3 marks each.

5. Section D has 4 questions carrying 5 marks each.

- 6. Section E has 3 case based integrated units of assessment (04 marks each) with sub-parts of the values of 1, 1 and 2 marks each respectively.
- 7. All questions are compulsory. However, an internal choice of 2 questions of 5 marks, 2 questions of 3 marks and 2 Questions of 2 marks has been provided. An internal choice has been provided in the 2 marks questions of Section E.
- 8. Draw neat figures wherever required. Take $\pi = \frac{22}{7}$ wherever required if not stated.

		SECT	TION A	
	S	ection A consists of 20	questions of 1 mark each.	
Q.				Marks
No.				
1	If the product of the zeroe	es of the polynomial $f($	$x) = ax^3 - 6x^2 + 11x - 6$	is 4, then the 1
	value of a is			
	(a) -11 (b)	$\frac{1}{6}$ (c) $\frac{3}{2}$	$(d)\frac{11}{4}$	
2	The value of k, for which	2k+7, 6k- 2 and 8k+4 a	re 3 consecutive terms of an	AP. 1
	(a) $\frac{15}{2}$ (b)	$\frac{13}{2}$ (c) $\frac{17}{2}$	$(d)\frac{11}{2}$	
3	If $\tan \theta = \frac{12}{13}$, then the value of the target of targe	lue of $\frac{2\sin\theta\cos\theta}{\cos^2\theta - \sin^2\theta}$ is		1
	(a) $\frac{312}{25}$ (b))	$\frac{337}{25}$ (c) $\frac{287}{25}$	(d) 13	

4	If the perimeter of a sector of a circle of radius 6.4 cm is 30 cm, then the area of corresponding					
	sector is					
	(a) $60 \ cm^2$	(b) 50 <i>cm</i> ²	(c) 55.04 cm^2	(d) 57 cm^2		
5	If two concentric cir	cles are of radii 1	0cm and 8cm, ther	the length of the chord of the larger	1	
	circle which touches	the smaller circl	e is			
	(a) 6cm	(b)12cm	(c)18cm	(d) 9 cm		
6	If \triangle ABC and \triangle DE	F are similar tria	ngles , such that $\angle A$	A=47, $\angle E$ =83, then $\angle C$ is equal to	1	
	(a) 47°	(b)83°	(c)50°	(d) 60°		
7	The distance betwee	n the points ((a s	$\sin\theta + b\cos\theta, 0)$	and $(0, a\cos\theta - b\sin\theta)$ is	1	
	(a) $a^2 + b^2$	(b) $a^2 - b^2$	(c) $\sqrt{a^2 + b^2}$	$(d)\sqrt{a^2-b^2}$		
8	The sum of the prob	abilities of all the	e elementary events	is	1	
	(a) 0	(b) 1	(c) 1.5	(d) None of these.		
9	The value of $2\cos^2$	$30^{\circ} + sec^2 30^{\circ} +$	$2\cos0^{\circ}+3\sin90^{\circ}-3$	$tan^2 60^\circ$ is	1	
	(a) $\frac{6}{29}$	(b) $\frac{4}{25}$	(c)) $\frac{29}{6}$	(d) $\frac{3}{26}$		
10	What is the nature of	f roots of the qua	dratic equation $5y$	$x^2 - 4y + 3 = 0$?	1	
	(a) Four real roo	ts (b) Two real	roots (c) No real ro	oot (d) one real root.		
11	The pair of linear eq	uation $2x + ky$	$-3 = 0, \ 6x + \frac{2}{3}y$	+7 = 0 has a unique solution, if	1	
			(c) $k \neq 5$			
12	If four vertices of a p	parallelogram tak	ten in order are (-3,	-1), (a,b), (3,3) and (4,3), then a:b is	1	
	equal to					
	(a) 1:4	(b) 4:1	(c)1:2	(d) 2:1		
13	The median of a give	en data is 20. If e	each item is increase	ed by 2, then the new median will be	1	
	(a) 40	(b)10	(c)22	(d) 20		
14	A cylindrical vessel	32cm high and 1	8cm as the radius of	f the base, is filled with sand. This	`1	
	bucket is emptied or	the ground and	a conical heap of sa	and is formed. If the height of the		
	conical heap is 24cm	n, then the radius	of its base is			
	(a) 30 cm	(b) 36 cm	(c) 34 cm	(d) 35 cm.		
15	If tangents PA and P	B from a point P	to a circle with cer	ntre O are inclined to each other at	1	
	angle of 80°, then th	e value of $\angle POA$	is			

	(a) 60°	(b) 90°	(c) 0°	(d) !	50°	
16	If $\operatorname{cosec} A = 2$,	then the value of $\frac{1}{ta}$	$\frac{1}{\ln A} + \frac{\sin A}{1 + \cos A}$ is			1
	(a) 0	(b) 1	(c) 2	(d) 1	3	
17	In the given figu	re, O is the center of	f the circle with PA	and PB as t	angents.	1
	P	A 60°D				
	If measure of $\angle A$	$ADB = 60^\circ$, then ΔB	PAB is an			
					gle (d) None of these.	
18	In the given figu CD is	are, $\angle ABC = 90^{\circ}$ and	d BD⊥ AC. If BD=	8 cm and A	D=4 cm, then the value of	1
	A 4 cr 8 cr	R				
	(a) 16 cm	(b) 8 cm	(c) 4	cm	(d) 10 cm.	
19		2 is a rational numbe				1
		e square roots of all				
	a) Both Assertion Assertion (A		R) are true and Rea	son (R) is th	e correct explanation of	
	<i>.</i>	s	R) are true and Rea	son (R) is no	ot the correct explanation of	
	Assertion (A	3 S S	10		1	
	c) Assertion (A)	is true but Reason (R) is false.			
	d) Assertion (A)	is false but Reason	(R) is true.			
20	Assertion (A) :4	x + 3y = 18 is a lin	e which is parallel	to X-axis.		1
	Reason (R): Th	e graph of linear equ	ation $ax = b$, when	the $a \neq 0$ is p	earallel to Y-axis.	
	a) Both Asserti	on (A) and Reason (R) are true and Rea	son (R) is th	e correct explanation of	
	Assertion (A).				

	b) Both Assertion (A) and Reason (R) are true and Reason (R) is not the correct explanation of	
	Assertion (A).	
	c) Assertion (A) is true but Reason (R) is false.	
	d) Assertion (A) is false but Reason (R) is true.	
2	SECTION B	
	Section B consists of 5 questions of 2 marks each.	
21	In $\triangle ABC$, D and E are points on the sides AB and AC respectively, such that $DE \parallel BC$. If	2
	AD= $4x - 3$, AE= $8x - 7$, BD= $3x - 1$ and CE= $5x - 3$, then find the value of x.	
22	If two tangents are inclined at 60° are drawn to a circle of radius 3 cm, then find length of each	2
	tangent.	
	Or	
	If PQ is a tangent to a circle with centre O at point P. If ΔOPQ is an isosceles triangle, then find	
	$\angle OPQ.$	
23	PQ is a chord of length 8cm of a circle of radius 5cm. The tangents at P and Q intersect at a	2
	point T. Find the length TP.	
	T d cm R Or	
	Or	
	Ina circle of radius 28 cm, an arc subtends an angle of 45° at the centre. Find	
	(i)The length of the arc.	
24	(ii)The area of the sector.	2
24	If $\cos \alpha = \frac{1}{2}$ and $\tan \beta = \frac{1}{\sqrt{3}}$, then find $\sin(\alpha + \beta)$, where α and β are both acute angles.	2
25	Two numbers are in the ratio 5:6. If 8 is subtracted from each of the numbers, the ratio becomes	2
	4:5, then find the numbers.	
	SECTION C	
	Section C consists of 6 questions of 3 marks each.	

26	10 10	6.4	1		()		.1	1 [2
26	If α and β are the zeros		-	lynomial	$(x) = 3x^2$	x - 4x + 1,	then find a	a quadratic	3
	polynomial whose zeroe	es are $\frac{\alpha^2}{\beta}$ a	and $\frac{\beta^2}{\alpha}$.						
27	Three sets of English, H	lindi and l	Mathemat	tics book	have to be	stacked in s	uch a way	that all the	3
	books are stored topic-	wise and	the heigh	nt of each	stack is the	he same .Th	e number	of English	
	book is 96, the number	of Hindi	books is	s 240 and	the numb	er of Mathe	matics bo	oks is 336.	
	Assuming that the book	s are of th	ne same tl	hickness ,	determine	the number	of stacks	of English,	
	Hindi and Mathematics	books.							
28	If the roots of the equati	ion $(a^2 +$	$b^2)x^2 -$	2(ac+b)	$(d)x + (c^2)$	$(+d^2) = 0$	are equal ,	prove	3
	that $\frac{a}{b} = \frac{c}{d}$.								
			OR						
	Solve for x , $\frac{1}{2a+b+2}$	$\frac{1}{2x} = \frac{1}{2a}$	$+\frac{1}{b}+\frac{1}{b}$	$\frac{1}{2x}$					
29	Prove that $\frac{\sin \theta - \cos \theta}{\sin \theta + \cos \theta}$	$\frac{s \theta + 1}{s \theta - 1} =$	$=\frac{1}{\sec\theta}$	1 –tan θ					3
			OR						
	ta	an A			-				
	Prove that, $\frac{1}{1-1}$	$\frac{1}{\cot \theta}$ +	$1-\tan\theta$	= 1 +	$\sec\theta\cos\theta$	$\operatorname{sec} \theta$			
30	If all the side of a parall	elogram t	ouch a cir	rcle, show	that the p	arallelogram	is a rhom	bus.	3
31	Two dice are thrown sin	nultaneou	sly. What	t is the pro	bability th	nat:			3
	(i)5 will not come up	p on eithe	r of them	? (ii) 5 wi	ll come up	on at least o	one? (iii) 5	will come	
	up at both dice?								
			S	ECTION	D				
	Se	ection D o	consists o	f 4 questi	ons of 5 n	narks each.			
32	A utensil is in the form	n of hemi	spherical	bowl, in	which a h	ollow cylind	ler is kept	on it. The	5
	radius of sphere is 7cm	and the h	eight of u	tensil is 1	3cm. Find	the capacity	of utensil.		
33	3 The following frequency distribution shows the daily savings of 64 children in a locality						lity	5	
	Daily savings	1-3	3-5	5-7	7-9	9-11	11-13	13-15	
	Number of children	7	6	Х	13	У	5	4	
	If mean savings is 8, th	nen find tl	ne missing	g frequence	eies x and	у.			
	•								

ſ					<u> </u>			
	OR An incomplete distribution is given as follows							
	The meoniplete distribution is given as follows							
	Class interval Frequency							
		0-10	10					
		10-20	20	-				
		20-30	?					
		30-40	40					
		40-50	?					
		50-60	25					
		60-70	15	-				
	The median value is 35	and sum of all the free	uencies is 170. Usin	g the median formula, fill				
	up the missing frequencie	es.						
34	The sum of areas of two squares is $468m^2$. If difference of their perimeters is 24m, then find							
	their sides of both squares.							
35	State and prove Basic proportionality theorem .							
	OR							
	Two poles of height a and b (b>a) are c metres apart. Prove that the height h metres of the point							
	of intersection of the lines joining the top of each pole to the foot of the opposite pole is $\frac{ab}{a+b}$.							
	$A = \begin{bmatrix} E \\ h \\ h \\ c \end{bmatrix}$							

	SECTION E	
	Section E consists of 3 questions of 4 marks each.	
36	Your friend veer wants to participate in a 200m race . He can currently run that distance in 51 seconds and with each day of practice it takes him 2 seconds less. He wants to do in 31 seconds.	
	On the basis of above information, answer the following questions. (i) What is the minimum number of days he needs to practice till his goal is achieved ? (ii) Write done the A.P for the given situation. (iii) The value of <i>x</i> ,for which 2 <i>x</i> , <i>x</i> + 10, 3 <i>x</i> + 2are three consecutive terms of an AP. OR The 17 th term of an AP exceeds its 10 th term by 14, then find common difference.	1 1 2
37	In figure , a tower is shown of height 80m. A bird is sitting on the top of tower as shown at point A. After 2 seconds the birds flies away horizontally but remain at constant height. Now, the angle of elevation from observation point C, changes from 45° to 30° as shown.	

	(i) Find the distance BC.	1
		1
	(ii) Find the distance CE.	1
	(iii) Find the speed of bird, when flies from point A to D.	2
	OR	
	If bird covers distance AD in 5 seconds then find the speed of bird in m/s.	
38	Aayush starts walking from his house to office. Instead of going to the office directly, he goes	
	to a bank first, from there to his daughters school and then reaches the office.(assume that all	
	distances covered are in straight lines). If the house is situated at (2,4), bank at (5,8), school at	
	(13,14) and office at (13.26) and coordinates are in km.	
	(13, 14) Daughter's school House (2, 4) (2, 4) (2, 4)	
	Answer the question based on above	
	(i) Find the distance between house and bank.	1
	(ii) What is the distance between house and office?	1
	(iii) What is the total distance travelled by Aayush to reach the office?	2
	OR	
	What is the extra distance travelled by Aayush ?	

