Please check this question paper contains 38 questions and 11 printed pages.

Roll No.

D.A.V. INSTITUTIONS, CHHATTISGARH PRACTICE PAPER - 10 CLASS: X SUBJECT: MATHEMATICS (BASIC)

TIME: 3 HOURS

MAX MARKS: 80

General Instructions:

- 1. This Question Paper has 5 sections A E.
- 2. Section A has 20 MCQs carrying 1 mark each.
- 3. Section B has 5 questions carrying 2 marks each.
- 4. Section C has 6 questions carrying 3 marks each.
- 5. Section D has 4 questions carrying 5 marks each.
- 6. Section E has 3 case based integrated units of assessment (04 marks each) with sub-parts of the values of 1, 1 and 2 marks each respectively.
- 7. All questions are compulsory. However, an internal choice of 2 questions of 5 marks, 2 questions of 3 marks and 2 Questions of 2 marks has been provided. An internal choice has been provided in the 2 marks questions of Section E.
- 8. Draw neat figures wherever required. Take $\pi = \frac{22}{7}$ wherever required if not stated.

	SECTION A							
	Section A consists of 20 questions of 1 mark each.							
Q.			Marks					
No.								
1	If the H.C.F. of A and B is 24 and	that of C and D is 56, then the H.C.F. of A,B,C and D is:	1					
	(A). 4 (B). 12	(C). 8 (D). 3						

2	If $a = 2^3 \times 3$, $b = 2 \times 3 \times 5$, $c = 3n \times 5$ and LCM (a, b, c) $= 2^3 \times 3^2 \times 5$, then n =							
	(A). 1	(B). 2	(C). 3	(D). 4				
3	Which of the followi	ng polynomials with only	one zero?		1			
	(A). $p(x) = 2x^2 - 3x +$	4 (B). $p(x) = x^2 - 2x + 1$	(C). $p(x) = 2x + 3$	(D). $p(x) = 5$				
4	The system of linear	equations $\mathbf{x} + 2\mathbf{y} + 5 = 0$ a	nd $-3x - 6y + 1 = 0$ have:		1			
	(A). a unique solution	n	(B). exactly two solution	ons				
	(C). infinitely many	solutions	(D). no solution					
5	If $p = -7$ and $q = 12$,	then $\mathbf{x}^2 + \mathbf{p}\mathbf{x} + \mathbf{q} = 0$, then	the value of 'x' is:		1			
	(A)3 and 4	(B). 3 and 4	(C)3 and -4	(D). 3 and -4				
6	The discriminant of t	he quadratic equation $2x^2$.	-6x - 3 = 0 is:		1			
	(A). 60	(B). $\sqrt{60}$	(C). 12	(D). $\sqrt{12}$				
7	Two poles of height 8	8 m and 13 m are standing	12 m apart. The distance bet	ween their tops is:	1			
	(A). 19 m	(B). 17 m	(C). 15 m	(D). 13 m				
8	In two triangles ΔAB	BC and $\Delta \mathbf{DEF}, \ \frac{AB}{DE} = \frac{BC}{EF} =$	$=\frac{CA}{FD}$, then:		1			
	(A). $\Delta FDE \sim \Delta CAB$	(B). \triangle FDE ~ \triangle ABC	(C). $\triangle CBA \sim \triangle FDE$ (E	D). $\triangle BCA \sim \triangle FDE$				
9	The point where the	perpendicular bisector of the	ne line segment joining the p	oints A(2, 5) and	1			
	B(4, 7) is:							
	(A). (2, 5)	(B). (6, 3)	(C). (0, 0)	(D). (3, 6)				
10	If A and B are acute	angles and $sinA = cosB$, the	then the value of $(A + B)$ is:		1			
	(A). 30 ⁰	(B) . 0 ⁰	(C). 90 ⁰	(D). 60 ⁰				

11	$\frac{2\tan\tan 30^{\circ}}{1-\tan^2 30^{\circ}}$ is equa	al to:			1				
	$1 - tan^{2}30^{\circ}$								
	(A). $\cos 60^{\circ}$	(B). $\sin 60^{\circ}$	(C). $\tan 60^{\circ}$	(D). sin 30 ⁰					
12	If tangents PA and	PB from a point P to a	circle with centre O are inclin	ned to each other at an	1				
	angle of 80°, then	find ∠POA							
	A O B B								
	(A). 60 ⁰	(B). 40 ⁰	(C). 100 [°]	(D). 50 [°]					
13	3 If the difference between the circumference and radius of a circle is 37cm, then the								
	circumference of t	the circle is given by:							
	(A). 33cm	(B). 22cm	(C). 44cm	(D).55cm					
14	The area of a ring	having 'R' as outer radi	us and 'r' as inner radius is:		`1				
	(A). $\pi(R^2 + r^2)$	(B). $\pi(R + r)$	(C). $\pi(R^2 - r^2)$	(D). π(R - r)					
15	The diameter of th	ne moon is approximate	ly one-fourth of that of the ear	rth. What is the	1				
	(approximate) ratio of the volume of the moon to that of the earth?								
	(A). $\frac{1}{16}$	(B). $\frac{1}{32}$	(C). $\frac{1}{48}$	(D). $\frac{1}{64}$					
16	In a frequency dis	tributions, mode is 7.88	8, mean is 8.32 then median is	:	1				
	(A). 8.17	(B). 7	(C). 7.17	(D). 8.27					

17	The median class of the following distribution is:								
	x	5 - 10	10 - 20	20 - 30	30 - 40	40 - 50	50 - 60]	
	F	4	8	12	16	9	5	-	
	(A). 20	- 30	(B). 5 - 10		(C). 50) - 60		(D). 30 - 40	
18	Two dice are thrown simultaneously. What is the probability of getting two numbers whose product is even?								1
	(A). $\frac{1}{4}$ (B). $\frac{3}{4}$ (C). $\frac{1}{2}$ (D). $\frac{1}{8}$						(D). $\frac{1}{8}$		
19	Assert	ion (A): Th	e point (0,4) lie	es on the y-	axis.				1
	Reason	n (R): The >	k-coordinate on	the point o	n the y-axis	is zero.			
	a) Both Assertion (A) and Reason (R) are true and Reason (R) is the correct explanation of Assertion (A).								
	 b) Both Assertion (A) and Reason (R) are true and Reason (R) is not the correct explanation of Assertion (A). 								
	c) Assertion (A) is true but Reason (R) is false.								
	d) Assertion (A) is false but Reason (R) is true.								

20	Assertion (A): The HCF of two numbers is 5 and their product is 150, then their LCM is 30.	1						
	Reason (R): For any two positive integers 'a' and 'b', HCF $(a, b) + LCM (a, b) = a \times b$.							
	a) Both Assertion (A) and Reason (R) are true and Reason (R) is the correct explanation of Assertion (A).							
	b) Both Assertion (A) and Reason (R) are true and Reason (R) is not the correct explanation of Assertion (A).							
	c) Assertion (A) is true but Reason (R) is false.							
	d) Assertion (A) is false but Reason (R) is true.							
	SECTION B							
	Section B consists of 5 questions of 2 marks each.							
21	Two concentric circles are of radii 5 cm and 3 cm. Find the length of the chord of the larger circle which touches the smaller circle.	2						

26	Find the probability that a number selected at random from the numbers 1,2,3,4,5,6,,35 is a	3
	(i). prime number,	
	(ii). multiple of 7,	
	(iii). multiple of 3 or 5.	
27	Prove that the lengths of two tangents drawn from an external point to a circle are equal.	3
28	Given $\sec\theta = \frac{13}{12}$, calculate all other trigonometric ratios.	3
	OR	
	If $3\cot A = 4$, check whether $\frac{1 - \tan^2 A}{1 + \tan^2 A} = \cos^2 A - \sin^2 A$ or not.	
29	In a cyclic quadrilateral ABCD, $\angle A = (2x + 4)^0$, $\angle B = (y + 3)^0$, $\angle C = (2y + 10)^0$ and	3
	$\angle D = (4x - 5)^0$,. Find all four angles.	
	OR	
	The sum of a two-digit number and the number obtained by reversing the order of digits is 99.	
	If the digits offer by 3, find the number.	
30	Prove that in \sqrt{n} is not a rational number. If 'n' is not a perfect square.	3
31	If the sum of the squares of zeroes of the quadratic polynomial $f(x) = x^2 - 8x + k$ is 40. Then	3
	find the value of 'k'.	
	SECTION D	
	Section D consists of 4 questions of 5 marks each.	
	1	

32	The diagonal of a rectangular field is 60 m more than the shorter side. If the longer side is 30 m								5	
	more than the shorter side, find the sides of the field.									
					OR					
	The length of the hypotenuse of a right-angled triangle exceeds the length of the base by 2 cm									
	and exceeds ty	wice the	length of	the altitud	le by 1cm.	Find the le	ength of eac	ch side of t	he triangle.	
33	Prove that if a line is drawn parallel to one side of a triangle to one side of a triangle to intersect							5		
	the other two sides in distinct points, then the other two sides are divided in the same ratio. By									
	using this theo	orem, pro	ove that in	ΔABC , if	DE BC,	then $\frac{AD}{AB} =$	$=\frac{AE}{AC}$.			
34	A copper wire	e, 3 mm i	n diamete	er, is wound	d about a c	ylinder wh	ose length	is 12 cm a	ind	5
	diameter 10 cr	m, so as	to cover t	he curved a	surface of	the cylinde	r. Find the	length and	l mass of	
	the wire, assur	ming the	density o	of copper to	be 8.88g	per cm ³ .				
					OR					
	A solid iron p	ole consi	sts of a c	linder of l	height 220	cm and ba	se diamete	r 24cm wł	nich is	
	surmounted by		6. -		-					
	given that 1 cr			-				inuss of th	ie poie,	
							2012			
35	A student note			3. .		-		-	each of 3	5
	minutes and s	ummariz	ed in the	table giver	n below. Fin	nd the mod	le of the da	ita.		
	No. of cars 0 - 10 10 - 20 20 - 30 30 - 40 40 - 50 50 - 60 60 - 70 70 - 80									
	Frequency	7	14	13	12	20	11	15	8	
-				S	ECTION	E				
	Section E consists of 3 questions of 4 marks each.									
		0.5				ernustaat maanadii – taataataa fidaa				

3	36	While playing a treasure hunt game, some clues(numbers) are hidden in various spots					
		collectively forming an A.P. If the number on the nth spot is $20 + 4n$, then answer the following					
		questions to help the player in spotting the clues.					
		Download free HD stock image of Tea					
		(i). Which number is on the first spot?	1				
		(ii) Which number is on the $(n - 2)^{th}$ spot?	1				
		(iii). What is the sum of all the numbers on the first 90 spots?	2				
		OR					
		Which spot is numbered as 116 and Which number is on the 34 th spot?					

