PRACTICE PAPER 6

CLASS X

TIME: 3 Hours

SUBJECT: MATHEMATICS (BASIC)

MAX MARKS: 80

General Instructions:

1 This Question Paper has 5 Sections A-E.

2 Section A has 20 MCQs carrying 1 mark each.

3. Section B has 5 questions carrying 02 marks each.

4. Section C has 6 questions carrying 03 marks each.

5. Section D has 4 questions carrying 05 marks each.

6. Section E has 3 case based integrated units of assessment (04 marks each) with sub-parts of the values of 1, 1 and 2 marks each respectively.

7. All Questions are compulsory. However, an internal choice in 2 Qs of 2 marks, 2 Qs of 3 marks and 2 Questions of 5 marks has been provided. An internal choice has been provided in the 2 marks Questions of Section E.

8. Draw neat figures wherever required. Take $\pi = 22/7$ wherever required if not stated.

2	SECTION A					
	Section A consists of 20 questions of 1 mark each					
Q No.		MARKS				
1	Let E be an event such that $P(\text{not } E) = \frac{1}{5}$, then $P(E) =$					
	(a) $\frac{1}{5}$ (b) $\frac{2}{5}$ (c) 0 (d) 4 If p (x) = x ² + 5x + 6, then p (-2) is					
2	If $p(x) = x^2 + 5x + 6$, then $p(-2)$ is	1				
	(a) 20 (b) 0 (c) $- 8$ (d) 8					
3	The mode of the numbers 2, 3, 3, 4, 5, 4, 4, 5, 3, 4, 2, 6, 7 is					
	(a) 2 (b) 3 (c) 4 (d) 5					
4	How many tangents can be drawn to a circle from a point on it ?	1				
	(a) 1 (b) 2 (c) Infinite (d) 0					
5	A quadratic equation whose one root is 2 and the sum of whose roots is zero, is	1				
<i>v</i>	(a) $x^{2} + 4 = 0$ (b) $x^{2} - 2 = 0$ (c) $4x^{2} - 1 = 0$ (d) $x^{2} - 4 = 0$					
6	Which among the following is not a quadratic equation ?					
	(a) $2(x-1)^2 = 4x^2 - 2x + 1$ (b) $2x - x^2 = x^2 + 5$					
	(c) $(2x+3)^2 + x^2 = 3x^2 - 5x$ (d) $(x^2+2x)^2 = x^4 + 3 + 4x^3$					
7	A quadratic polynomial whose sum and product of zeroes are 2 and -1 1					
	respectively is					
	(a) $x^2 + 2x + 1$ (b) $x^2 - 2x - 1$ (c) $x^2 + 2x - 1$ (d) $x^2 - 2x + 1$					
Page 1 of 7						

8	$HCF \times LCM$ for	the numbers 30 and	70 is		1
	(a) 2100	(b) 21	(c) 210	(d) 70	
9	The length of the	arc of a circle of ra	dius 14 cm which subtends	an angle of 600 at	1
	the centre of the	circle is			
	(a) $\frac{44}{3}$ cm	(b) $\frac{88}{3}$ cm	(c) $\frac{308}{3}$ cm	(d) $\frac{616}{3}$ cm	
10	If the radius of a semi-circular protractor is 7cm, then its perimeter is				1
	(a) 11 cm	(b) 14 cm	(c) 22 cm	(d) 36 cm	
11	The angle of elevation of the top of a 15 m high tower at a point $15\sqrt{3}$ m away			t $15\sqrt{3}$ m away	1
	from the base of	the tower is			
	(a) 30°	(b) 45°	(c) 60°	(d) 90°	
12	$\frac{2}{3}\sin^0{0} - \frac{4}{5}\cos^0{0}$	=			1
	(a) $\frac{2}{3}$	(b) $\frac{-4}{5}$	(c) 0	(d) $\frac{-2}{15}$	
13	From a well-shut	fled deck of 52 card	ls, a card is drawn at rando	m. What is the	1
	probability of ge	tting king of hearts '	?		
	(a) $\frac{1}{52}$	(b) $\frac{1}{26}$	(c) $\frac{1}{13}$	$(d)\frac{12}{13}$	
14	The number (5 –	$3\sqrt{5} + \sqrt{5}$) is			1
	(a) an integer	(b) a rational number		
	(c) an irrational	number (d) a whole number		
15	If the pair of line	ar equations (3k + 1)x + 3y - 5 = 0, 2x - 3y + 3	5 = 0 has infinitely	1
	many solutions,	then the value of k is	S		
	(a) – 1	(b) 0	(c) 1	(d) 2	
16	If $\triangle ABC \sim \triangle DE$	F and $\angle A = 47^{\circ}$, $\angle I$	$E = 83^{\circ}$, then $\angle C =$		1
	(a) 47°	(b) 50°	(c) 83°	(d) 130°	
17	The length of the tangent from an external point A to a circle, of radius 3 cm, is 4			f radius 3 cm, is 4	1
	cm. The distance	of A from the centr	re of the circle is		
	(a) 7 cm	(b) 5 cm	(c) 7 cm	(d) 25 cm	
18	The pair of linear	r equations $x + 2y +$	5 = 0 and $-3x - 6y + 1 =$	0 has :	1
	(a) a unique solu	ition	(b) exactly two solutions		
	(c) infinitely man	iy solutions	(d) no solution		
19 Assertion: If one root of the quadratic equation $4x^2 - 10x + (k - 4) = 0$ reciprocal of the other then the value of k is 8. Reason: Roots of the quadratic equation $x^2 - x + 1 = 0$ are real.					1
		(A) and reason (R) assertion (A).	are true and reason (R) is t	he correct	
			Page 2 of 7		

		·				
	 b) Both assertion (A) and reason (R) are true but reason (R) is not the correct explanation of assertion (A). c) Assertion (A) is true but reason (R) is false. d) Assertion (A) is false but reason (R) is true. 					
20	 20 Assertion: A tangent to a circle is perpendicular to the radius through the point of contact. Reason: The lengths of tangents drawn from an external point to a circle are equal. a) Both assertion (A) and reason (R) are true and reason (R) is the correct explanation of assertion (A). b) Both assertion (A) and reason (R) are true but reason (R) is not the correct explanation of assertion (A). c) Assertion (A) is true but reason (R) is false. d) Assertion (A) is false but reason (R) is true. 					
	SECTION B					
	Section B consists of 5 questions of 2 marks each					
21	Find the discriminant of the quadratic equation $3x^2 - 2x + \frac{1}{3} = 0$ and hence find the nature of its roots. OR	2				
	Find the roots of the quadratic equation $x^2 - x - 2 = 0$.					
22	In the figure given below, A, B and C are points on OP, OQ and OR respectively such that AB PQ and AC PR. Show that BC QR. P A A B C R B C R	2				
23	If $\sin \alpha = \frac{1}{2}$, then find the value of $(3 \cos \alpha - 4 \cos^3 \alpha)$.	2				
24	Find the coordinates of the point which divides the join of A (-1, 7) and B (4, -3) in the ratio 2 : 3. OR If the points A (2, 3), B (-5, 6), C (6, 7) and D (p, 4) are the vertices of a parallelogram ABCD, find the value of p	2				
	Page 3 of 7	I				

			1					
35	The sha	adow of a tower standing on a level ground is found to be 40 m longer when	5					
	the Sun's altitude is 30° than when it was 60°. Find the height of the tower.							
	OR							
	From the top of a 7 m high building, the angle of elevation of the top of a cable							
	tower is 60° and the angle of depression of its foot is 45°. Determine the height of							
	the tow	ver.						
		SECTION E						
	Case study based questions are compulsory							
36	<u>Case study – 1</u>							
	Khushi wants to organize her birthday party. Being health conscious, she decided to							
	serve only fruits in her birthday party. She bought 36 apples and 60 bananas and decided to							
	distribute fruits equally among all.							
	Based on the above information, answer the following questions:							
	i)	How many guests Khushi can invite at the most ?	1					
	ii)	How many apples and bananas will each guest get ?	1					
	iii)	If Khushi decides to add 42 mangoes, how many guests Khushi can invite	2					
		at the most?						
		If the cost of 1 dozen of bananas is \gtrless 60, the cost of 1 apple is \gtrless 15 and cost						
		of 1 mango is \gtrless 20, find the total amount spent on 60 bananas, 36 apples						
		and 42 mangoes.						
37	Case st	tudy – <u>2</u>						
	Use of	f mobile screen for long hours makes your eye sight weak and give you headad	ches.					
		en who are addicted to play "PUBG" can get easily stressed out. To raise soci	22.					
		ness about ill effects of playing PUBG, a school decided to start 'BAN PUBG'						
	in which students are asked to prepare campaign board in the shape of a rectangle. One such							
Page 6 of 7								

